Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T06:32:04.244Z Has data issue: false hasContentIssue false

Poor embryo development and preimplantation genetic diagnosis outcomes of translocations involving chromosome 10: Do we blame genetics?

Published online by Cambridge University Press:  29 September 2014

P. Tulay*
Affiliation:
Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus Bahceci Fulya IVF Centre, Hakkı Yeten St, 11/3, 34365 Istanbul, Turkey
M. Gultomruk
Affiliation:
Bahceci Fulya IVF Centre, Hakkı Yeten St, 11/3, 34365 Istanbul, Turkey
N. Findikli
Affiliation:
Bahceci Fulya IVF Centre, Hakkı Yeten St, 11/3, 34365 Istanbul, Turkey
M. Bahceci
Affiliation:
Bahceci Fulya IVF Centre, Hakkı Yeten St, 11/3, 34365 Istanbul, Turkey
*
All correspondence to: Pinar Tulay. Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus. Tel: +90 212 3103100. Fax: +90 212 310 3190. e-mail: [email protected]

Summary

Balanced reciprocal translocation carriers are usually phenotypically normal. Although the reproductive risk of these carriers varies, they generally have a lower chance to produce normal or balanced gametes. Preimplantation genetic diagnosis (PGD) is offered to these patients to increase their chances of becoming pregnant by selecting a balanced embryo for transfer. This study aimed to analyse the development and the PGD outcome of the embryos obtained from reciprocal translocation carriers focusing on ones with chromosome 10 rearrangements. In total, 27 reciprocal translocation carriers underwent 31 cycles of PGD. PGD was performed using multicolour fluorescence in situ hybridisation for 298 embryos and of these 136 were obtained from couples carrying translocations involving chromosome 10 rearrangements. Carriers of translocations involving chromosome 10 rearrangements have a lower chance of producing normal or balanced embryos compared with the carriers with other rearrangements. The development of embryos obtained from the patients with chromosome 10 rearrangements was impaired and only a limited number of embryos developed to the blastocyst stage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaujean, N., Hartshorne, G., Cavilla, J., Taylor, J., Gardner, J., Wilmut, I., Meehan, R. & Young, L. (2004). Non-conservation of mammalian preimplantation methylation dynamics. Curr. Biol. 14, R266–7.CrossRefGoogle ScholarPubMed
Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E. & Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA 98, 13734–8.CrossRefGoogle ScholarPubMed
Escudero, T., Abdelhadi, I., Sandalinas, M. & Munne, S. (2003). Predictive value of sperm fluorescence in situ hybridization analysis on the outcome of preimplantation genetic diagnosis for translocations. Fertil. Steril. 79 Suppl 3, 1528–34.CrossRefGoogle ScholarPubMed
Evsikov, S., Cieslak, J. & Verlinsky, Y. (2000). Effect of chromosomal translocations on the development of preimplantation human embryos in vitro. Fertil. Steril. 74, 672–7.CrossRefGoogle ScholarPubMed
Findikli, N., Kahraman, S., Kumtepe, Y., Donmez, E., Biricik, A., Sertyel, S., Berkil, H. & Melil, S. (2003). Embryo development characteristics in Robertsonian and reciprocal translocations: a comparison of results with non-translocation cases. Reprod. Biomed. Online 7, 563–71.CrossRefGoogle ScholarPubMed
Goldman, A.S., Fomina, Z., Knights, P.A., Hill, C.J., Walker, A.P. & Hulten, M.A. (1993). Analysis of the primary sex ratio, sex chromosome aneuploidy and diploidy in human sperm using dual-colour fluorescence in situ hybridisation. Eur. J. Hum. Genet. 1, 325–34.CrossRefGoogle ScholarPubMed
Hartshorne, G.M., Barlow, A.L., Child, T.J., Barlow, D.H. & Hulten, M.A. (1999). Immunocytogenetic detection of normal and abnormal oocytes in human fetal ovarian tissue in culture. Hum. Reprod. 14, 172–82.CrossRefGoogle ScholarPubMed
Howlett, S.K. & Reik, W. (1991). Methylation levels of maternal and paternal genomes during preimplantation development. Development 113, 119–27.CrossRefGoogle ScholarPubMed
Jacobs, P.A., Melville, M., Ratcliffe, S., Keay, A.J. & Syme, J. (1974). A cytogenetic survey of 11,680 newborn infants. Ann. Hum. Genet. 37, 359–76.CrossRefGoogle Scholar
Kleckner, N. (1996). Meiosis: how could it work? Proc. Natl. Acad. Sci. USA 93, 8167–74.CrossRefGoogle ScholarPubMed
Ko, D.S., Cho, J.W., Lee, H.S., Kim, J.Y., Kang, I.S., Yang, K.M. & Lim, C.K. (2013). Preimplantation genetic diagnosis outcomes and meiotic segregation analysis of Robertsonian translocation carriers. Fertil. Steril. 99, 1369–76.CrossRefGoogle ScholarPubMed
Lim, C.K., Cho, J.W., Song, I.O., Kang, I.S., Yoon, Y.D. & Jun, J.H. (2008). Estimation of chromosomal imbalances in preimplantation embryos from preimplantation genetic diagnosis cycles of reciprocal translocations with or without acrocentric chromosomes. Fertil. Steril. 90, 2144–51.CrossRefGoogle ScholarPubMed
Lledo, B., Ortiz, J.A., Morales, R., Ten, J., De La Fuente, P.E., Garcia-Ochoa, C. & Bernabeu, R. (2010). The paternal effect of chromosome translocation carriers observed from meiotic segregation in embryos. Hum. Reprod. 25, 1843–8.CrossRefGoogle ScholarPubMed
Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature 403, 501–2.CrossRefGoogle ScholarPubMed
Monk, M., Boubelik, M. & Lehnert, S. (1987). Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–82.CrossRefGoogle ScholarPubMed
Munne, S. (2005). Analysis of chromosome segregation during preimplantation genetic diagnosis in both male and female translocation heterozygotes. Cytogenet. Genome Res. 111, 305–9.CrossRefGoogle ScholarPubMed
Munne, S., Escudero, T., Sandalinas, M., Sable, D. & Cohen, J. (2000). Gamete segregation in female carriers of Robertsonian translocations. Cytogenet. Cell. Genet. 90, 303–8.CrossRefGoogle ScholarPubMed
Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., Dean, W., Reik, W. & Walter, J. (2000). Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–8.CrossRefGoogle ScholarPubMed
Reik, W., Dean, W. & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089–93.CrossRefGoogle ScholarPubMed
Rougier, N., Bourc’his, D., Gomes, D.M., Niveleau, A., Plachot, M., Paldi, A. & Viegas-Pequignot, E. (1998). Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12, 2108–13.CrossRefGoogle ScholarPubMed
Santos, F. & Dean, W. (2004). Epigenetic reprogramming during early development in mammals. Reproduction 127, 643–51.CrossRefGoogle ScholarPubMed
Santos, F., Hendrich, B., Reik, W. & Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–82.CrossRefGoogle ScholarPubMed
Scriven, P.N., Handyside, A.H. & Ogilvie, C.M. (1998). Chromosome translocations: segregation modes and strategies for preimplantation genetic diagnosis. Prenat. Diagn. 18, 1437–49.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Scriven, P.N., Flinter, F.A., Khalaf, Y., Lashwood, A. & Mackie Ogilvie, C. (2013). Benefits and drawbacks of preimplantation genetic diagnosis (PGD) for reciprocal translocations: lessons from a prospective cohort study. Eur. J. Hum. Genet. 21, 1035–41.CrossRefGoogle ScholarPubMed
Simopoulou, M., Harper, J.C., Fragouli, E., Mantzouratou, A., Speyer, B.E., Serhal, P., Ranieri, D.M., Doshi, A., Henderson, J., Rodeck, C.H. & Delhanty, J.D. (2003). Preimplantation genetic diagnosis of chromosome abnormalities: implications from the outcome for couples with chromosomal rearrangements. Prenat. Diagn. 23, 652–62.CrossRefGoogle ScholarPubMed
Ulug, U., Turan, E., Tosun, S.B., Erden, H.F. & Bahceci, M. (2007). Comparison of preovulatory follicular concentrations of epidermal growth factor, insulin-like growth factor-I, and inhibins A and B in women undergoing assisted conception treatment with gonadotropin-releasing hormone (GnRH) agonists and GnRH antagonists. Fertil. Steril. 87, 995–8.CrossRefGoogle Scholar
Van Echten-Arends, J., Coonen, E., Reuters, B., Suijkerbuijk, R.F., Dul, E.C., Land, J.A. & Van Ravenswaaij-Arts, C.M. (2013). Preimplantation genetic diagnosis for X;autosome translocations: lessons from a case of misdiagnosis. Hum. Reprod. 28, 3141–5.CrossRefGoogle ScholarPubMed
Van Hummelen, P., Manchester, D., Lowe, X. & Wyrobek, A.J. (1997). Meiotic segregation, recombination, and gamete aneuploidy assessed in a t(1;10)(p22.1;q22.3) reciprocal translocation carrier by three- and four-probe multicolor FISH in sperm. Am. J. Hum. Genet. 61, 651–9.CrossRefGoogle Scholar