Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:05:51.629Z Has data issue: false hasContentIssue false

Phosphorylated H2AX in parthenogenetically activated, in vitro fertilized and cloned bovine embryos

Published online by Cambridge University Press:  15 April 2014

A.F. Pereira
Affiliation:
Laboratory of Physiology and Control of Reproduction, School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil.
L.M. Melo
Affiliation:
Laboratory of Physiology and Control of Reproduction, School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil.
V.J.F. Freitas
Affiliation:
Laboratory of Physiology and Control of Reproduction, School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil.
D.F. Salamone*
Affiliation:
Laboratory of Animal Biotechnology, School of Agronomy, Buenos Aires University, Av. San Martín 4453, C1417, Buenos Aires, Argentina. Laboratory of Animal Biotechnology, School of Agronomy, Buenos Aires University, Buenos Aires, Argentina.
*
All correspondence to: Daniel Felipe Salamone. Laboratory of Animal Biotechnology, School of Agronomy, Buenos Aires University, Av. San Martín 4453, C1417, Buenos Aires, Argentina. Tel: +54 11 4524 8000. Fax: +54 11 4514 8737. e-mail: [email protected]

Summary

In vitro embryo production methods induce DNA damage in the embryos. In response to these injuries, histone H2AX is phosphorylated (γH2AX) and forms foci at the sites of DNA breaks to recruit repair proteins. In this work, we quantified the DNA damage in bovine embryos undergoing parthenogenetic activation (PA), in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) by measuring γH2AX accumulation at different developmental stages: 1-cell, 2-cell and blastocyst. At the 1-cell stage, IVF embryos exhibited a greater number of γH2AX foci (606.1 ± 103.2) and greater area of γH2AX staining (12923.6 ± 3214.1) than did PA and SCNT embryos. No differences at the 2-cell stage were observed among embryo types. Although PA, IVF and SCNT were associated with different blastocyst formation rates (31.1%, 19.7% and 8.3%, P < 0.05), no differences in the number of γH2AX foci or area were detected among the treatments. γH2AX is detected in bovine preimplantation embryos produced by PA, IVF and SCNT; the amount of DNA damage was comparable among those embryos developing to the blastocyst stage among different methods for in vitro embryo production. While IVF resulted in increased damage at the 1-cell embryo stage, no difference was observed between PA and SCNT embryos at any developmental stage. The decrease in the number of double-stranded breaks at the blastocyst stage seems to indicate that DNA repair mechanisms are functional during embryo development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adenot, P.G., Mercier, Y., Renard, J.P. & Thompson, E.M. (1997). Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124, 4615–25.CrossRefGoogle ScholarPubMed
Adiga, S.K., Toyoshima, M., Shimura, T., Takeda, J., Uematsu, N. & Niwa, O. (2007). Delayed and stage specific phosphorylation of H2AX during preimplantation development of g-irradiated mouse embryos. Reproduction 133, 415–22.CrossRefGoogle Scholar
Aitken, R.J. & Clarkson, J.S. (1987). Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. Reprod. Fertil. 81, 459–69.CrossRefGoogle ScholarPubMed
Aitken, R.J., Clarkson, J.S. & Fishel, S. (1989). Generation of reactive oxygen species, lipid peroxidation and human sperm function. Biol. Reprod. 40, 183–97.CrossRefGoogle Scholar
ASAB (2006). Guidelines for the treatment of animals in behavioral research and teaching. Anim. Behav. 71, 245–53.CrossRefGoogle Scholar
Barton, S.C., Arney, K.L., Shi, W., Niveleau, A., Fundele, R., Surani, M.A. & Haaf, T. (2001). Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum. Mol. Genet. 10, 2983–7.CrossRefGoogle ScholarPubMed
Beaujean, N., Taylor, J.E., McGarry, M., Gardner, J.O., Wilmut, I., Loi, P., Ptak, G., Galli, C., Lazzari, G., Bird, A., Young, L.E. & Meehan, R.R. (2004). The effect of interspecific oocytes on demethylation of sperm DNA. Dev. Biol. 101, 7636–40.Google ScholarPubMed
Bevacqua, R.J., Pereyra-Bonnet, F., Olivera, R., Hiriart, M.I., Sipowicz, P., Fernandez-Martín, R., Radrizzani, M. & Salamone, D.F. (2012). Production of IVF transgene-expressing bovine embryos using a novel strategy based on cell cycle inhibitors. Theriogenology 78, 5768.CrossRefGoogle ScholarPubMed
Bohrer, R.C., Che, L., Gonçalves, P.B., Duggavathi, R. & Bordignon, V. (2013). Phosphorylated histone H2A.x in porcine embryos produced by IVF and somatic cell nuclear transfer. Reproduction 21, 325–33.CrossRefGoogle Scholar
Brackett, B. & Oliphant, G. (1975) Capacitation of rabbit spermatozoa in vitro. Biol. Reprod. 12, 260–74.CrossRefGoogle ScholarPubMed
Brandão, D.O., Maddox-Hyttel, P., Lovendahl, P., Rumpf, R., Stringfellow, D. & Callesen, H. (2004). Post hatching development: a novel system for extended in vitro culture of bovine embryos. Biol. Reprod. 71, 2048–55.CrossRefGoogle ScholarPubMed
Bird, A. (2002). DNA methylation patterns and epigenetic memory. Gene Dev. 16, 621.CrossRefGoogle ScholarPubMed
Bouniol, C., Nguyen, E. & Debey, P. (1995). Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp. Cell. Res. 218, 5762.CrossRefGoogle ScholarPubMed
Dean, W. & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089–93.Google Scholar
Derijck, A.A.H.A., Heijden, G.W.V.D., Giele, M., Philippens, M.E.P., Bavel, C.C.A.W.V. & Boer, P. (2006). γH2AX signalling during sperm chromatin remodeling in the mouse zygote. DNA Repair 5, 959–71.CrossRefGoogle ScholarPubMed
Fernandez-Capetillo, O., Chen, H.T., Celeste, A., Ward, I., Romanienko, P.J., Morales, J.C., Naka, K., Xia, Z., Camerini-Otero, R.D., Motoyama, N., Carpenter, P.B., Bonner, W.M., Chen, J. & Nussenzwig, A. (2003). DNA damage-induced G2-M checkpoint activation by histone H2A.X and 53 bp1. Nat. Cell. Biol. 4, 993–7.CrossRefGoogle Scholar
Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. & Nussenzweig, A. (2004). H2AX: the histone guardian of the genome. DNA Repair 3, 959–67.CrossRefGoogle ScholarPubMed
Gali, C., Duchi, R., Crotti, G., Turini, P., Ponderato, N., Colleoni, S., Lagutina, I. & Lazzari, G. (2003). Bovine embryo technologies. Theriogenology 59, 599616.CrossRefGoogle Scholar
Gawecka, J.E., Marh, J., Ortega, M., Yamauchi, Y., Ward, M.A. & Ward, W.S. (2013). Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS One 8, 8 (2): e56385.CrossRefGoogle Scholar
Gonçalves, F.S., Barretto, L.S.S., Arruda, R.P., Perri, S.H.V. & Mingoti, G.Z. (2010). Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development. Reprod. Dom. Anim. 45, 129–35.CrossRefGoogle ScholarPubMed
Grenier, L., Robaire, B. & Hales, B.F. (2012). The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by a damaged paternal genome. Toxicol. Sci. 127, 555–66.CrossRefGoogle ScholarPubMed
Hosseini, S.O., Aghaee, F., Hosseini, S.M., Hajian, M., Forouzanfar, M, Noorbakhshnia, M., Gourabi, H., Shahverdi, A.H., Dizaj, A.V.T. & Nasr-Esfahani, M.H. (2011). Effect of culture condition and cell-permeable superoxide dismutase on levels of reactive oxygen species (ROS) production in “in vitro” produced sheep embryos. Small Rum. Res. 97, 8893.CrossRefGoogle Scholar
Ismail, H.I. & Hendzel, M.J. (2008). The γH2AX: is it just a surrogate marker of double-strand breaks or much more? Environ. Mol. Mutagen. 49, 7382.CrossRefGoogle ScholarPubMed
Kaneko, H., Igarashi, K., Kataoka, K. & Miura, M. (2005). Heat shock induces phosphorylation of histone H2AX in mammalian cells. Biochem. Biophys. Res. 328, 1101–6.CrossRefGoogle ScholarPubMed
Kobayashi, J. (2004). Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to gamma through FHA/BRCT domain. J. Radiat. Res. 45, 473–8.CrossRefGoogle ScholarPubMed
Kofman-Alfaro, S. & Chandley, A.C. (1971). Radiation-initiated DNA synthesis in spermatogenic cells of the mouse. Exp. Cell. Res. 69, 3344.CrossRefGoogle ScholarPubMed
La Rosa, I., Camargo, L.S.A., Pereira, M.M., Fernandez-Martin, R., Paz, D.A. & Salamone, D.F. (2011). Effects of bone morphogenic protein 4 (BMP4) and its inhibitor, Noggin, on in vitro maturation and culture of bovine preimplantation embryos. Reprod. Biol. Endocrinol. 9, 1825.CrossRefGoogle ScholarPubMed
Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662–73.CrossRefGoogle ScholarPubMed
Li, C., Mizutani, E., Ono, T. & Wakayama, T. (2009). Production of normal mice from spermatozoa denatured with high alkali treatment before ICSI. Reproduction 137, 779–92.CrossRefGoogle ScholarPubMed
Liu, H.L., Kentaro, T., Hara, T. & Aoki, F. (2005). Role of the first mitosis in the remodeling of the parental genomes in mouse embryos. Cell. Res. 15, 127–32.CrossRefGoogle ScholarPubMed
Loppin, B., Bonnefoy, E., Anselme, C., Laurencon, A., Karr, T.L. & Couble, P. (2005). The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437, 1386–90.CrossRefGoogle ScholarPubMed
Lu, K.H., Gordon, I., Chen, H.B., Gallagher, M. & Mcgovern, H. (1988). Birth of twins after of cattle embryos produced by in vitro techniques. Vet. Rec. 122, 539–40.CrossRefGoogle ScholarPubMed
Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature 403, 501–2.CrossRefGoogle ScholarPubMed
McManus, K.J. & Hendzel, M.J. (2005). ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol. Biol. Cell 16, 5013–25.CrossRefGoogle ScholarPubMed
Meehan, R.R. (2003). DNA methylation in animal development. Semin. Cell. Dev. Biol. 14, 5365.CrossRefGoogle ScholarPubMed
Norimura, T., Nomoto, S., Katsuki, M., Gondo, Y. & Kondo, S. (1996): p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nat. Med. 2, 577–80.CrossRefGoogle ScholarPubMed
Oback, B., Wiersema, A.T. & Gaynor, P. (2003). Cloned cattle derived from a novel zona-free embryo reconstruction system. Cloning Stem Cells 5, 312.CrossRefGoogle ScholarPubMed
Paffoni, A., Brevini, T.A., Gandolfi, F. & Ragni, G. (2008). Parthenogenetic activation: biology and applications in the ART laboratory. Placenta 29, 121–5.CrossRefGoogle Scholar
Park, J.S., Jeong, Y.S., Shin, S.T., Lee, K.K. & Kang, Y.K. (2007). Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev. Dyn. 236, 2523–33.CrossRefGoogle ScholarPubMed
Pereira, A.F., Feltrin, C., Almeida, K.C., Carneiro, I.S., Avelar, S.R.G., Alcântara Neto, A.S., Sousa, F.C., Melo, C.H.S., Moura, R.R., Teixeira, D.I.A, Freitas, V.J.F., Bertolini, L.R. & Bertolini, M. (2013). Analysis of factors contributing to the efficiency of the in vitro production of transgenic goat embryos (Capra hircus) by handmade cloning (HMC). Small Rum. Res. 109, 163–72.CrossRefGoogle Scholar
Pilch, D.R., Sedelnikova, O.A., Redon, C., Celeste, A., Nussenzweig, A. & Bonner, W.M. (2003). Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem. Cell. Biol. 81, 123–9.CrossRefGoogle ScholarPubMed
Redon, C., Pilch, D., Rogakou, E., Sedelnikova, O., Newrock, K. & Bonner, W.M. (2002). Histone H2A variants H2AX and H2AZ. Curr. Opin. Gen. Dev. 12, 162–9.CrossRefGoogle ScholarPubMed
Reina-San-Martin, B., Difilippantonio, S., Hanitsch, L., Masilamani, R.F., Nussenzweig, A. & Nussenzweig, M.C. (2003). H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J. Exp. Med. 197, 1767–78.CrossRefGoogle ScholarPubMed
Renard, J.P. (1998). Chromatin remodeling and nuclear reprogramming at the onset of embryonic development in mammals. Reprod. Fertil. Dev. 10, 573–80.CrossRefGoogle Scholar
Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–68.CrossRefGoogle ScholarPubMed
Salamone, D., Barañao, L., Santos, C., Bussmann, L., Artuso, J., Werning, C., Prync, A., Carbonetto, C., Dabsys, S., Munar, C., Salaberry, R., Berra, G., Berra, I., Fernández, N., Papouchado, M., Foti, M., Judewicz, N., Mujica, I., Muñoz, L., Alvarez, S.F., González, E., Zimmermann, J., Criscuolo, M. & Melo, C. (2006). High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. J. Biotechnol. 124, 469–72.CrossRefGoogle ScholarPubMed
Santos, F., Zakhartchenko, V., Stojkovic, M., Peters, A., Jenuwein, T., Wolf, E., Reik, W. & Dean, W. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol. 13, 1116–21.CrossRefGoogle ScholarPubMed
Sedelnikova, O., Pilch, D.R., Redon, C. & Bonner, W.M. (2003). Histone H2AX in DNA damage and repair. Cancer Biol. Ther. 2, 233–5.Google ScholarPubMed
Sega, G.A., Sotomayor, R.E. & Owens, J.G. (1978). A study of unscheduled DNA synthesis induced by X-rays in the germ cells of male mice. Mutat. Res. 49, 239–57.CrossRefGoogle ScholarPubMed
Shi, W. & Haaf, T. (2002). Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 63, 329–34.CrossRefGoogle ScholarPubMed
Stiff, T., O'Driscoll, M., Rief, N., Iwabuchi, K., Lobrich, M. & Jeggo, P.A. (2004). Atm and DNA-pk function redundantly to phosphorylate h2ax after exposure to ionizing radiation. Cancer Res. 64, 2390–6.CrossRefGoogle ScholarPubMed
Takahashi, M., Keicho, K., Takahasi, H., Ogawa, H., Schultz, R.M. & Okano, A. (1999). Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay. Theriogenology 54, 137–45.CrossRefGoogle Scholar
Vajta, G., Peura, T.T., Holm, P., Paldi, A., Greve, T., Trounson, A.O. & Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Mol. Reprod. Dev. 55, 256–64.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Ward, W.S. & Coffey, D.S. (1991). DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol. Reprod. 44, 569–74.CrossRefGoogle ScholarPubMed
Ziegler-Birling, C., Helmrich, A., Tora, L. & Torres-Padilla, M. (2009). Distribution of p53 binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage. Int. J. Dev. Biol. 53, 1003–1.CrossRefGoogle ScholarPubMed