Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T09:21:32.411Z Has data issue: false hasContentIssue false

Oocyte activation in invertebrates and humans

Published online by Cambridge University Press:  26 September 2008

Brain Dale
Affiliation:
Stazione Zoologica, Villa Comunale, I-80121 Naples, Italy

Extract

Oocytes are metabolically repressed cells that, in most cases, require a signal from the fertilising spermatozoon to trigger activation. Physiological competence of the activated oocyte, a prerequisite for early embryogenesis, depends, therefore, not only on the quality of the oocyte, but also on the quality of the spermatozoon (Dale, 1983; Tosti & Dale, 1992). There are two current opinions as to how the spermatozoon triggers the oocyte into metabolic activity (Dale & DeFelice, 1990). The first hypothesis is that following gamete fusion the spermatozoon releases a soluble activating factor into the oocyte cytoplasm that is then amplified globally by second messengers in the oocyte. The second is that sperm binding to receptors spanning the oocyte plasma membrane is the signal that is transduced to the second messenger system of the oocyte (Swann, 1993; Foltz & Shilling, 1993).

Type
Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brownlee, c., Dale, B. (1990). Temporal and spatial correlation of fertilization current, calcium waves and cytoplasmic contraction in eggs of Ciona intestinalis. Proc. R. Soc. Lond. B 239, 321–8.Google ScholarPubMed
Dale, B.. (1983). Fertiliztion in Animals. London: Edward Arnold.Google Scholar
Dale, B.. (1987). Fertilization channels in ascidian eggs are not activated by ca. Exp. Cell Res. 172, 474–80.CrossRefGoogle Scholar
Dale, B.. (1988). Primary and secondary messengers in the activation of ascidian eggs. Exp. Cell Res. 177, 205–11.CrossRefGoogle ScholarPubMed
Dale, B., DeFelice, L.J.. (1984). Sperm activated channels in ascidian oocyte. Dev. Biol. 121, 235–9.CrossRefGoogle Scholar
Dale, B., DeFelice, L.J.. (1990). Soluble sperm factores, electrical events and egg activation and egg activation. In: Mechanism of Fertilizations: Plants to Humans, ed Dale, B, pp. 475–85. Nato Cell Biology Series vol. H45. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Dale, B., DeSantis, A.. (1981). Maturation and fertilization of the sea urchin oocyte: an electrophysiological study. Dev. Biol. 85, 474–84.CrossRefGoogle ScholarPubMed
Dale, B., Santella, L.. (1985). Sperm-oocyte interaction in the sea-urchin. J. Cell Sci. 74, 153–67.CrossRefGoogle ScholarPubMed
Dale, B., DeFelice, L.J., Taglietti, V.. (1978). Membrane noise and conductance increase during single spermatozoon-egg interaction. Nature 275, 217–19.CrossRefGoogle Scholar
Dale, B., DeSantis, A., Ortolani, G.. (1983). Electrical response to fertilization in ascidian oocytes. Dev. Biol. 99, 188–93.CrossRefGoogle ScholarPubMed
Dale, B., DeFelice, L.J., Ehrenstein, G.. (1985). Injection of a soluble sperm fraction into sea urchin eggs triggers the cortical reaction. Experientia 41, 1068–70.CrossRefGoogle ScholarPubMed
Dale, B., Hagstrom, B., Santella, L.. (1989). Partially fertilized sea urchin eggs: an electrophysiological and morphological study. Dev. Growth Deffer. 31, 165–70.CrossRefGoogle ScholarPubMed
DeFelice, L.J., Dale, B., Talevi, R.. (1986). Distribution of fertilization channels in ascidian oocyte membrane. Proc. R. Soc. Lond. B229, 209–14.Google Scholar
Foltz, K.R., Shilling, F.M.. (1993). Receptor-mediated signal transduction and egg activation. Zygote 1, 276–9.CrossRefGoogle ScholarPubMed
Foltz, K.R., Partin, J.S., Lennarz, W.J.. (1993). Sea urchin egg receptor for sperm: sequence similarity of binding domain and hsp. Science 259, 1421–5.CrossRefGoogle Scholar
Gianaroli, L., Tosti, E., Magli, C., Iaccarino, M., Ferraretti, A.P., Dale, B.. (1994). Fertilization current in the human oocyte. Mol. Reprod. Dev. 38, 209–14.CrossRefGoogle ScholarPubMed
Ginsberg, A.. (1988). Egg cortical reaction during fertilization and its role in block to polyspermy. Sov. Sci. Rev. F. Physiol. Gen. Biol. 1, 307–75.Google Scholar
Igusa, Y., Miyazaki, S., Yamashita, N.. (1983). Periodic hyperpolarizing responses in hamster and mouse eggs fertilized with mouse sperm. J. Physiol. (Lond). 340, 633–47.CrossRefGoogle ScholarPubMed
Iwasa, K.H., Ehrenstein, G., DeFelice, L.J., Russell, J.T.. (1990). High concentrations of inositol 1,4,5-trisphosphate in sea urchin sperm. Biochem. Biophys. Res. Commun. 172, 932–8.CrossRefGoogle ScholarPubMed
Kline, D., Kado, R., Kopf, G., Jaffe, L.. (1990). Receptors, G-proteins and activation of the amphibian egg. In: Mechanism of Fertilization: Plants to Humans, ed. Dale, B., pp. 529–41. Nato Cell Biology Series vol. H45. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Loeb, J.. (1913). Artificial Parthenogenesis and Fertilization. ChicagoUniversity Press.Google Scholar
Lynn, J., Chambers, E.. (1984). Voltage clamp studies of fertilization in sea urchin eggs. I. Effect of clamped membrane potential on spern entry, activation and development. Dev. Biol. 102, 98109.CrossRefGoogle Scholar
McCulloh, D.H., Chambers, E.L.. (1986). When does the sperm fuse with the egg? J. Gen. Physiol. 88, 38a39a.(abstr).Google Scholar
McCulloh, D.H., Chambers, E.L.. (1991). A localized zone of increased conductance progresses over the surface of sea urchin egg during fertilization. J. Gen. Physiol. 97, 579604.CrossRefGoogle ScholarPubMed
McCulloh, D.H., Rexroad, C.E., Levitan, H.. (1983). Insemination of rabbit eggs is associated with slow depolarization and repetitive diphasic membrane potentials. Dev. Biol. 95, 372–7.CrossRefGoogle ScholarPubMed
Miyazaki, S., Igusa, Y.. (1981). Fertilizationj potential in golden hamster eggs consists of recurring hyperpolarizations. Nature 290, 706–7.CrossRefGoogle ScholarPubMed
Miyazaki, s., Nakada, K., Shirakawa, H.. (1993). Signal transduction of gamete interaction and intracellular calcium release mechanism at fertilization of mammlian eggs. In: Biology of Germ Lines in Animals and Man, ed. Mohori, H, Takahasi, M, Tachi, C: JapanScientific Press.Google Scholar
Nuccitelli, R., Cherr, G., Clark, W.. (1989). Mechanism of Egg Activation. Bodega Marine Laboratory Marine Science Series. New York:Plenum Press.CrossRefGoogle Scholar
Pecorella, C., Tosti, E., Kyozuka, K., Dale, B.. (1993). Activation currents, sperm entry and surface contractions in ascidian eggs. Zygote, 1, 113–19.CrossRefGoogle ScholarPubMed
Robertson, T.. (1912). Studies on the fertilization of the eggs of a sea urchin and other fertilizing agents. Arch. Entwick-lungsmech. 35, 64130.CrossRefGoogle Scholar
Stice, S.L., Robl, J.M.. (1990). Activation of mammalian oocytes by a factor obtained from rabbit sperm. Mol. Reprod. Dev. 25, 272–80.CrossRefGoogle ScholarPubMed
Swann, K.. (1990). A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development 110, 1295–302.CrossRefGoogle ScholarPubMed
Swann, K.. (1993). The soluble sperm oscillogen hypotesis. Zygote 1, 273–9.CrossRefGoogle Scholar
Taylor, C.T., Lawrence, Y.M., Kingsland, C.R., Biljan, M.M., Cuthbertson, KSR. (1993). Oscillations in intracellular free calcium induced by spermatozoa in human oocytes at fertilization. Hum. Reprod. 8, 2174–9.CrossRefGoogle ScholarPubMed
Tosti, E., Dale, B.. (1992). Lithium and phorbol ester modify the activating capacity of ascidian spermatozoa. Experientia 48,CrossRefGoogle Scholar
Tosti, E., Dale, B.. (1994). Regualation of fertilization channels in ascidian eggs by intracelluar second messenger. Mol. Reprod. Dev. 37, 473–6.CrossRefGoogle Scholar
Whitaker, M., Irvine, R.. (1984). Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature 312, 636–9.CrossRefGoogle Scholar
Whitaker, M., Swann, K.. (1993). Lighting the fuse at fertilization. Development 117, 112.CrossRefGoogle Scholar