Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T07:47:45.942Z Has data issue: false hasContentIssue false

A novel microfluidic device for human sperm separation based on rheotaxis

Published online by Cambridge University Press:  27 December 2024

Alireza Heidarnejad
Affiliation:
Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
Mohammadreza Sadeghi
Affiliation:
Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
Saeid Arasteh
Affiliation:
Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
Mohammad Adel Ghiass*
Affiliation:
Tissue Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
*
Corresponding author: Mohammad Adel Ghiass; Email: [email protected]

Abstract

This study explores the efficacy of a novel microfluidic device in isolating rheotactic sperm and assesses their advantages compared with other motile sperm. Two microfluidic devices were used in this study: the microfluidic device we designed to separate sperm based on rheotaxis and a simple passive microfluidic device. We compared the results with the density gradient centrifugation technique. Sperm attributes including concentration, morphology, viability and motility were assessed using related procedures. Statistical analyses were conducted using one-way analysis of variance. Results showed differences in sperm concentration, motility, morphology and vitality using different sperm separation techniques. The sperms separated using our microfluidic device demonstrated the highest motilities, normal morphology percentages and higher sperm vitality but significantly lower sperm concentrations. These findings suggest the potential of our microfluidic design in enhancing sperm quality. Our findings are in agreement with previous research, emphasizing the capability of microfluidics in enhancing sperm quality. Specifically, our designed microfluidic device exhibited exceptional efficacy in isolating highly motile sperm, a critical factor for successful fertilization.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadkhani, N., Saadatmand, M., Kazemnejad, S. and Abdekhodaie, M. (2023) Qualified sperm selection based on the rheotaxis and thigmotaxis in a microfluidic system. Biomedical engineering letters 13(4), 671680.CrossRefGoogle Scholar
Ahn, J., Yoon, M.-J., Hong, S.-H., Cha, H., Lee, D., Koo, H.S., Ko, J.-E., Lee, J., Oh, S. and Jeon, N.L. (2021) Three-dimensional microengineered vascularised endometrium-on-a-chip. Human Reproduction 36(10), 27202731.CrossRefGoogle ScholarPubMed
Alias, A.B., Huang, H.-Y. and Yao, D.-J. (2021) A review on microfluidics: an aid to assisted reproductive technology. Molecules 26(14), 4354.CrossRefGoogle ScholarPubMed
Asare-Anane, H., Bannison, S., Ofori, E.K., Ateko, R., Bawah, A., Amanquah, S., Oppong, S., Gandau, B. and Ziem, J. (2016) Tobacco smoking is associated with decreased semen quality. Reproductive Health 13(1), 16.CrossRefGoogle ScholarPubMed
Ataei, A., Lau, A. and Asghar, W. (2021) A microfluidic sperm-sorting device based on rheotaxis effect. Microfluidics and Nanofluidics 25(6), 52.CrossRefGoogle Scholar
Björndahl, L., Söderlund, I. and Kvist, U. (2003) Evaluation of the one-step eosin-nigrosin staining technique for human sperm vitality assessment. Human Reproduction 18(4), 813816.CrossRefGoogle ScholarPubMed
Danis, R.B. and Samplaski, M.K. (2019) Sperm morphology: history, challenges, and impact on natural and assisted fertility. Current Urology Reports 20, 18.CrossRefGoogle ScholarPubMed
Duran, H.E., Morshedi, M., Kruger, T. and Oehninger, S. (2002) Intrauterine insemination: a systematic review on determinants of success. Human Reproduction Update 8(4), 373384.CrossRefGoogle ScholarPubMed
Enginsu, M., Pieters, M., Dumoulin, J., Evers, J. and Geraedts, J. (1992) Male factor as determinant of in-vitro fertilization outcome. Human Reproduction 7(8), 11361140.CrossRefGoogle ScholarPubMed
Gardner, D.K. and Lane, M. (2017) Culture systems for the human embryo. In Textbook of Assisted Reproductive Techniques. CRC Press, pp. 242266.Google Scholar
Gardner, D.K., Weissman, A., Howles, C.M. and Shoham, Z. (2012) Textbook of Assisted Reproductive Techniques Fourth Edition: Volume 2: Clinical Perspectives. CRC press.Google Scholar
Gode, F., Bodur, T., Gunturkun, F., Gurbuz, A.S., Tamer, B., Pala, I. and Isik, A.Z. (2019) Comparison of microfluid sperm sorting chip and density gradient methods for use in intrauterine insemination cycles. Fertility and Sterility 112(5), 842848. e841.CrossRefGoogle ScholarPubMed
Gonzalez-Castro, R., Stokes, J. and Carnevale, E. (2018) Equine Sperm Selection by Colloidal Centrifugation, Swim-up and a Microfluidic Device and ICSI Outcome. Journal of Equine Veterinary Science 66, 6162.CrossRefGoogle Scholar
Guler, C., Melil, S., Ozekici, U., Donmez Cakil, Y., Selam, B. and Cincik, M. (2021) Sperm selection and embryo development: a comparison of the density gradient centrifugation and microfluidic chip sperm preparation methods in patients with astheno-teratozoospermia. Life 11(9), 933.CrossRefGoogle ScholarPubMed
Guo, Y., Yang, Y., Yi, X. and Zhou, X. (2019) Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes. Cryobiology 90, 6370.CrossRefGoogle ScholarPubMed
Han, C., Zhang, Q., Ma, R., Xie, L., Qiu, T., Wang, L., Mitchelson, K., Wang, J., Huang, G. and Qiao, J. (2010) Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab on a Chip 10(21), 28482854.CrossRefGoogle Scholar
Heydari, A., Zabetian Targhi, M., Halvaei, I. and Nosrati, R. (2023) A novel microfluidic device with parallel channels for sperm separation using spermatozoa intrinsic behaviors. Scientific Reports 13(1), 1185.CrossRefGoogle ScholarPubMed
Huang, C.-H., Chen, C.-H., Huang, T.-K., Lu, F., Huang, J.Y.J. and Li, B.-R. (2023) Design of a gradient-rheotaxis microfluidic chip for sorting of high-quality Sperm with progressive motility. Iscience 26(8), 107356.CrossRefGoogle ScholarPubMed
Huang, H.-Y., Shen, H.-H., Chung, L.-Y., Chung, Y.-H., Chen, C.-C., Hsu, C.-H., Fan, S.-K. and Yao, D.-J. (2015) Fertilization of mouse gametes in vitro using a digital microfluidic system. IEEE Transactions on NanoBioscience 14(8), 857863.CrossRefGoogle ScholarPubMed
Khodamoradi, M., Rafizadeh Tafti, S., Mousavi Shaegh, S.A., Aflatoonian, B., Azimzadeh, M. and Khashayar, P. (2021) Recent microfluidic innovations for sperm sorting. Chemosensors 9(6), 126.CrossRefGoogle Scholar
Knowlton, S.M., Sadasivam, M. and Tasoglu, S. (2015) Microfluidics for sperm research. Trends in Biotechnology 33(4), 221229.CrossRefGoogle ScholarPubMed
Le Gac, S. and Nordhoff, V. (2017) Microfluidics for mammalian embryo culture and selection: where do we stand now? MHR: Basic Science of Reproductive Medicine 23(4), 213226.Google ScholarPubMed
Mane, N.S., Puri, D.B., Mane, S., Hemadri, V., Banerjee, A. and Tripathi, S. (2022) Separation of motile human sperms in a T-shaped sealed microchannel. Biomedical Engineering Letters 12(3), 331342.CrossRefGoogle Scholar
Mirsanei, J.S., Sheibak, N., Zandieh, Z., Mehdizadeh, M., Aflatoonian, R., Tabatabaei, M., Mousavi, A.S. and Amjadi, F. (2022) Microfluidic chips as a method for sperm selection improve fertilization rate in couples with fertilization failure. Archives of Gynecology and Obstetrics 306(3), 901910.CrossRefGoogle ScholarPubMed
Moghadam, M.T., Fard, Y.A., Saki, G. and Nikbakht, R. (2019) Effect of vitamin D on apoptotic marker, reactive oxygen species and human sperm parameters during the process of cryopreservation. Iranian Journal of Basic Medical Sciences 22(9), 1036.Google Scholar
Nagata, M.P.B., Endo, K., Ogata, K., Yamanaka, K., Egashira, J., Katafuchi, N., Yamanouchi, T., Matsuda, H., Goto, Y. and Sakatani, M. (2018) Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility. Proceedings of the National Academy of Sciences 115(14), E3087E3096.CrossRefGoogle ScholarPubMed
Nosrati, R., Graham, P.J., Zhang, B., Riordon, J., Lagunov, A., Hannam, T.G., Escobedo, C, Jarvi, K. and Sinton, D. (2017) Microfluidics for sperm analysis and selection. Nature Reviews Urology 14(12), 707730.CrossRefGoogle ScholarPubMed
Nosrati, R., Vollmer, M., Eamer, L., San Gabriel, M.C., Zeidan, K., Zini, A. and Sinton, D. (2014) Rapid Selection of Sperm with High DNA Integrity. Lab on a chip 14(6), 11421150.CrossRefGoogle ScholarPubMed
Ombelet, W., Dhont, N., Thijssen, A., Bosmans, E. and Kruger, T. (2014) Semen quality and prediction of IUI success in male subfertility: a systematic review. Reproductive Biomedicine Online 28(3), 300309.CrossRefGoogle ScholarPubMed
Parrella, A., Keating, D., Cheung, S., Xie, P., Stewart, J.D., Rosenwaks, Z. and Palermo, G.D. (2019) A treatment approach for couples with disrupted sperm DNA integrity and recurrent ART failure. Journal of assisted reproduction and genetics 36, 20572066.CrossRefGoogle ScholarPubMed
Sarbandi, I.R., Lesani, A., Moghimi Zand, M. and Nosrati, R. (2021) Rheotaxis-based sperm separation using a biomimicry microfluidic device. Scientific Reports 11(1), 18327.CrossRefGoogle ScholarPubMed
Schuster, T.G., Cho, B., Keller, L.M., Takayama, S. and Smith, G.D. (2003) Isolation of motile spermatozoa from semen samples using microfluidics. Reproductive Biomedicine Online 7(1), 7581.CrossRefGoogle ScholarPubMed
Sharma, S., Kabir, M.A. and Asghar, W. (2022) Selection of healthy sperm based on positive rheotaxis using a microfluidic device. Analyst 147(8), 15891597.CrossRefGoogle ScholarPubMed
Shirota, K., Yotsumoto, F., Itoh, H., Obama, H., Hidaka, N., Nakajima, K. and Miyamoto, S. (2016) Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertility andSsterility 105(2), 315321. e311.CrossRefGoogle ScholarPubMed
Suarez, S.S. and Pacey, A. (2006) Sperm transport in the female reproductive tract. Human Reproduction Update 12(1), 2337.CrossRefGoogle ScholarPubMed
Twigg, J., Irvine, D.S., Houston, P., Fulton, N., Michael, L. and Aitken, R.J. (1998) Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Molecular Human Reproduction 4(5), 439445.CrossRefGoogle Scholar
Wei-Xuan, L., Liang, G.-T., Wei, Y., Zhang, Q., Wei, W., Xiao-Mian, Z. and Da-Yu, L. (2013) Artificial uterus on a microfluidic chip. Chinese Journal of Analytical Chemistry 41(4), 467472.Google Scholar
Whitesides, G.M. (2006) The origins and the future of microfluidics. Nature 442(7101), 368373.CrossRefGoogle ScholarPubMed
Wu, J.-K., Chen, P.-C., Lin, Y.-N., Wang, C.-W., Pan, L.-C. and Tseng, F.-G. (2017) High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst 142(6), 938944.CrossRefGoogle Scholar
Yan, Y., Liu, H., Zhang, B. and Liu, R. (2020) A PMMA-based microfluidic device for human sperm evaluation and screening on swimming capability and swimming persistence. Micromachines 11(9), 793.CrossRefGoogle ScholarPubMed
Zaferani, M., Cheong, S.H. and Abbaspourrad, A. (2018) Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proceedings of the National Academy of Sciences 115(33), 82728277.CrossRefGoogle ScholarPubMed
Zhang, Z., Liu, J., Meriano, J., Ru, C., Xie, S., Luo, J. and Sun, Y. (2016) Human sperm rheotaxis: a passive physical process. Scientific Reports 6(1), 23553.CrossRefGoogle ScholarPubMed
Supplementary material: File

Heidarnejad et al. supplementary material

Heidarnejad et al. supplementary material
Download Heidarnejad et al. supplementary material(File)
File 2.9 MB