Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T13:24:46.707Z Has data issue: false hasContentIssue false

Malonaldehyde formation and DNA fragmentation: two independent sperm decays linked to reactive oxygen species

Published online by Cambridge University Press:  24 March 2010

Debbie Montjean
Affiliation:
ATL, R & D, Rue Louis Lormand, 78320 La Verriere, France. Laboratoire d'Eylau, 55 rue St Didier, 75116 Paris, France. Clinique Natecia, Lyon, France. Human Development Genetics, Institut Pasteur, Paris, France. EA1533 Reproduction Humaine: Génétique et Thérapeutique, Université Paris VI, France.
Yves Ménézo*
Affiliation:
Laboratoire d'Eylau, 55 rue St Didier, 75116 Paris, France. Laboratoire d'Eylau, 55 rue St Didier, 75116 Paris, France.
Moncef Benkhalifa
Affiliation:
ATL, R & D, Rue Louis Lormand, 78320 La Verriere, France. Laboratoire d'Eylau, 55 rue St Didier, 75116 Paris, France.
Marc Cohen
Affiliation:
Clinique Natecia, Lyon, France.
Stephanie Belloc
Affiliation:
Laboratoire d'Eylau, 55 rue St Didier, 75116 Paris, France.
Paul Cohen-Bacrie
Affiliation:
Laboratoire d'Eylau, 55 rue St Didier, 75116 Paris, France.
Jacques de Mouzon
Affiliation:
Unité INSERM 822, 82 rue Général Leclerc, 94276 Le Kremlin Bicetre, France.
*
All correspondence to: Yves Ménézo. Laboratoire d'Eylau, 55 rue St Didier, 75116 Paris, France. e-mail: [email protected]

Summary

Malondialdehyde (MDA), a product involved in membrane lipid peroxidation, was dosed in the sperm of 163 patients who had consulted the clinic regarding hypofertility. We attempted to determine if there was correlation between MDA content, sperm World Health Organization parameters and DNA fragmentation that results mainly from reactive oxygen species assaults. We found that no correlation could be established; however MDA and sperm decondensation were shown to be significantly linked. The impact of membrane polyunsaturated fatty acids and the role of phospholipid hydroperoxide glutathione peroxidase are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, R.J. & Clarkson, J.S. (1987). Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil. 81, 459–69.CrossRefGoogle Scholar
Aitken, R.J., Baker, M.A. & Sawyer, D. (2003). Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod. BioMed. Online 7, 65–7.CrossRefGoogle ScholarPubMed
Aitken, R.J., Wingate, J.K., De Iuliis, G.N., Koppers, A.J. & McLaughlin, E.A. (2006). Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J. Clin. Endocrinol. Metab. 91, 4154–63.CrossRefGoogle ScholarPubMed
Auger, J., Mesbah, M., Huber, C. & Dadoune, J.P. (1990). Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Intern. J. Androl. 13, 452–62.CrossRefGoogle ScholarPubMed
Badouard, C., Ménézo, Y., Panteix, G., Ravanat, J.L., Douki, T., Cadet, J. & Favier, A. (2008). Determination of new types of DNA lesions in human sperm. Zygote 16, 913.CrossRefGoogle ScholarPubMed
Belloc, S, Benkhalifa, M, Junca, AM et al. (2009 Paternal age and sperm DNA decay: discrepancy between chromomycin and aniline blue staining. Reprod. BioMed. Online 19, 264–9.CrossRefGoogle Scholar
Ben Abdallah, F., Dammak, I., Attia, H., Hentati, B., Ammar-Keskes, L. (2009). Lipid peroxidation and antioxidant enzyme activities in infertile men: correlation with semen parameter. J. Clin. Anal. 23, 99104.CrossRefGoogle Scholar
Carrell, D.T. (2008). Contributions of spermatozoa to embryogenesis: assays to evaluate their genetic and epigenetic fitness. Reprod. Biomed. Online 16, 474–84.CrossRefGoogle ScholarPubMed
Dadoune, J.P., Mayaux, M.J. & Guihard-Moscato, M.L. (1988). Correlation between defects in chromatin defects in condensation of human spermatozoa stained by aniline blue and semen characteristics. Andrologia 20, 211–7.CrossRefGoogle ScholarPubMed
De Iuliis, G.N., Thomson, L.K., Mitchell, L.A., Finnie, J.M., Koppers, A.J., Hedges, A., Nixon, B. & Aitken, R.J. (2009). DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2’-deoxyguanosine, a marker of oxidative stress. Biol. Reprod. 81, 2061–70.CrossRefGoogle ScholarPubMed
Evenson, D.P. & Wixon, R. (2006). Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology 65, 979–91.CrossRefGoogle ScholarPubMed
Fernández-Gonzalez, R., Moreira, P., Perez Crespo, M., Sánchez-Martín, M., Ramirez, M.A., Pericuesta, E., Bilbao, A., Bermejo-Alvarez, P., de Dios Hourcade, J., de Fonseca, F.R. & Gutiérrez-Adán, A. (2008). Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol. Reprod. 78, 761–72.CrossRefGoogle ScholarPubMed
Frydman, N., Prisant, N., Hesters, L., Frydman, R., Tachdjian, G., Cohen-Bacrie, P. & Fanchin, R. (2008). Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil. Steril. 89, 92–7.CrossRefGoogle Scholar
Guérin, P., Matillon, C., Bleau, G., Levy, R. & Menezo, Y. (2005). Impact of sperm DNA fragmentation on ART outcome. Gynecol. Obstet. Fertil. 33, 665–8.CrossRefGoogle ScholarPubMed
Hammadeh, M.E., Zeginiadov, T., Rosenbaum, P., Georg, T., Schmidt, W. & Strehler, E. (2001). Predictive value of sperm chromatin condensation (aniline blue staining). in the assessment of male fertility. Arch. Androl. 46, 99104.CrossRefGoogle ScholarPubMed
Henkel, R., Hajimohammad, M., Stalf, T., Hoogendijk, C., Mehnert, C., Menkveld, R., Gips, H., Schill, W.B. & Kruger, T.F. (2004). Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil. Steril. 81, 965–72.CrossRefGoogle ScholarPubMed
Menezo, Y.J.R., Russo, G., Tosti, E., El Mouatassim, S. & Benkhalifa, M. (2007). Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J. Assist. Reprod. Genet. 24, 513–20.CrossRefGoogle ScholarPubMed
Oger, I., Da Cruz, C., Panteix, G. & Menezo, Y. (2003). Evaluating human sperm DNA integrity: relationship between 8-hydroxydeoxyguanosine quantification and the sperm chromatin structure assay. Zygote 11, 367–71.CrossRefGoogle ScholarPubMed
Rousseaux, S., Reynoird, N., Escoffier, E., Thevenon, J., Caron, C. & Khochbin, S. (2008). Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod. BioMed. Online 16, 492503.CrossRefGoogle Scholar
Ursini, F., Maiorino, M. & Roveri, A. (1997). Phospholipid hydroperoxide glutathione peroxidase (PHGPx): more than an antioxidant enzyme? BioMed. Environ. Sci. 10, 327–32.Google ScholarPubMed
Wyrobek, A.J., Eskenazi, B., Young, S., Arnheim, N., Tiemann-Boege, I., Jabs, E.W., Glaser, R.L., Pearson, F.S. & Evenson, D. (2006). Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc. Natl. Acad. Sci. USA 103, 9601–7.CrossRefGoogle ScholarPubMed