Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T00:40:11.142Z Has data issue: false hasContentIssue false

The late events of fertilisation in the penaeoidean shrimp Sicyonia ingentis

Published online by Cambridge University Press:  26 September 2008

Philip L. Hertzler*
Affiliation:
Department of Zoology, University of California, Davis, and Bodega Marine Laboratory, California, USA.
Wallis H. Clark Jr
Affiliation:
Department of Zoology, University of California, Davis, and Bodega Marine Laboratory, California, USA.
*
P.L. Hertzler, Department of Zoology, Duke University, 234 Bio-Sci Box 90325, Durham, NC 27708-0325, USA. Telephone: (919) 684-2693. Fax: (919) 684-6168.

Abstract

Summary

Antibodies to sea urchin β-tubulin and mammalian heavy neurofilaments were to used the late events of fertilisation in the penaeoidean shrimp Sicyonia ingentis. The neurofilament antibody fortuitously stained centrosomes in eggs, as well as the subacrosomal region and acrosomal filament in sperm. The neurofilament antibody also stained a cortial site in eggs which was associated with the positioning of the mitotic spindle. During pronuclear migration, a large maternal microtubule during syngamy, while the sperm centrosomes formed the poles of the first mitotic spindle. Colcemid treatment modulated the size of the mitotic spindle and blocked pronuclear migration.

Type
Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertson, D.G. (1984). Formation of the first cleavage spindle in nematode embryos. Dev. Biol. 101, 6172.CrossRefGoogle ScholarPubMed
Alieva, I.B., Nadezhdina, E.S., Vaisberg, E.A. & Vorobjev, I.A. (1992). Microtuble and intermediate filament patterns around the centrosome in interphase sells. In: The Centrosome, ed. Kalnins, V.I.. pp. 103–29. San Diego: Academic press.CrossRefGoogle ScholarPubMed
Anteunis, A., Fautrez-Firlefyn, N. & Fautrez, J. (1967). L'accolement des pronuclei de l'oef d'Artemia salina. J. Ultrastruct. Res. 20, 206–10.CrossRefGoogle Scholar
Bestor, T.H. & Schatten, G. (1981). Anti-tubulin immunoflourescence microscopy of microtubules present during the pronuclear movements of sea urchin fertilization. Dev.Biol. 88, 8091.CrossRefGoogle Scholar
Brooks, W.K. (1882). Lucifer: a study in morphology. Phil. Trans. R. Soc. Lond. 173, 57137.Google Scholar
Buendia, B., Antony, C., Verde, F., Bornens, M. & Karsenti, E. (1990). A centrosomal antigen localized on intermediate filaments and mitotic spindle poles. J. Cell Sci. 97, 259–71.CrossRefGoogle ScholarPubMed
Callaini, G. & Riparbelli, M.G. (1990). Centriole and centrosome cycle in the early Drosophila embryo. J. Cell Sci. 97, 539–43.CrossRefGoogle ScholarPubMed
Cavanaugh, G. M. (1956). Formulae and Methods of the Marine Biological Laboratory Chemical Room, 6th edn.Woods Hole Mass.: Marine Biological Laboratory.Google Scholar
Chambers, E.L. (1939). The movement of the egg nucleus in relation to the spren aster in the echinoderm egg. J. Exp. Biol. 16, 409–24.CrossRefGoogle Scholar
Cledon, P. (1986). Study on oocyte maturation and activation of the common prawn Palaemon serratus (Pennant): relationship between oocytre maturation and the molt cycle cytological aspects. Gamete Res. 13, 353–62.CrossRefGoogle Scholar
Compton, D.A. & Cleveland, D.W. (1993). NuMA is required for the proper completion of mitosis. J. Cell Biol. 120, 947–57.CrossRefGoogle ScholarPubMed
Criel, G. (1992). Gametogenesis, fertilization and development in Artemia sp. (Crustacea: Anostraca). PhD dissertation, University of Ghent.Google Scholar
Damrongphol, P., Eangchuan, N. & Poolsanguan, B. (1991). Chromosome behavior upon fertilization in eggs of the giant freshwater prawn, Macrobrachium rosenbergii (deman). Invertebrate Reprod. 19, 45–9.CrossRefGoogle Scholar
Dent, J.A. & Klymkowsky, M.W. (1989). Whole-mount analyses of cytoskeletal reoraganization and function during oogenesis and early embryogenesis in Xenopus. In: The Cell Biology of Fertilization, ed. Schatten, G. & Schatten, H., pp. 63103. San Diego: Academic Press.CrossRefGoogle Scholar
Griffin, F.J., Shigekawa, K., Clark, W.H. Jr, (1988). Formation and structure of the acrosomal filament in the sperm of siyconia ingentis. J. Exp. Zool. 246, 94102.CrossRefGoogle Scholar
Hamaguchi, M.S. & Hiramoto, Y. (1980). Fertilization process in the heart-urchin, Clypeaster japonicus, observed with a diffrential interference microscope.Dev. Growth Differ. 22, 517–30.CrossRefGoogle Scholar
Hamaguchi, M.S. & Hiramoto, Y. (1986). Analysis of the role of astral rays in pronuclear migration in sand dollar eggs by the Colcemid-UV method. Dev. Growth Differ. 28, 143–56.CrossRefGoogle ScholarPubMed
Harlow, E. & Lane, D. (1988). Antibodies: A Laboratory Manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.Google Scholar
Harris, P., Osborn, M. & Weber, K. (1980). Distribution of tubulin-containing structures in the egg of the sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage. J. Cell Biol. 84, 668–79.CrossRefGoogle ScholarPubMed
Hertzler, P.L., Clark, W.H. Jr (1992). Cleavage and gastrulation in the shrimp Sicyonia ingentis: invagination is accoumpanied by oriented cell division. Development, 116, 127–40.CrossRefGoogle Scholar
Hudinaga, M. (1942). Reproduction, development and rearing of Penaeus japonicus Bate. Jpn. J. Zool. 10, 305–87.Google Scholar
Hyman, A.A. & Stearns, T. (1992). Spindle positioning and cell polarity. Curr. Biol. 2, 469–71.CrossRefGoogle ScholarPubMed
kajishima, T. (1951). Development of isolated balstomers of Penaeus japonicus. Zool. Mag. 60, 258–62.Google Scholar
Kuriyama, R., Borisy, G.G. & Masui, Y. (1986). Microtubule cycle in oocytes of the surf clam Spisula solidissima: an immunofluorescence study. Dev. Biol. 114, 151–60.CrossRefGoogle ScholarPubMed
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.CrossRefGoogle ScholarPubMed
Lee, T.-H. & Yamazaki, R.( 1989). Cytological observations on fertilization in the Chinese fresh-water crab, Eriocheir sinensis by artificial insemination (in vitro) and incubation. Aquaculture 76, 347–60.CrossRefGoogle Scholar
Le Guen, P.Crozet, N. (1989). Microtubule and centrosome detection during sheep fertilization. Eur. J. Cell Biol. 48, 239–49.Google Scholar
Lindsay, L.L., Hertzler, P.L. & Clark, W.H. Jr. (1992). Extracellular Mg2+ induces an intracellular Ca2+ wave during oocyte activation in the marine shrimp Sicyonia ingentis. Dev. Biol. 152, 94102.CrossRefGoogle ScholarPubMed
Luykx, P. (1991). Behavior of egg and sperm centrioles in fertilized eggs of Urechis caupo. Cytobios 66, 719.Google Scholar
Lynn, J.W., Glas, P.S., Hertzler, P.L., Clark, W.H. Jr & Green, J.D. (1993). Manipulations of shrimp embryos envelope. J. World Aquaculture Soc. 24, 15.CrossRefGoogle Scholar
Maro, B., Howlett, S.K. & Webb, M. (1985). Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J. Cell Biol. 101, 1665–72.CrossRefGoogle ScholarPubMed
Mazia, D. (1987). The chromosome cycle and the centrosome cycle in the mitotic cycle. Int. Rev. Cytol. 100, 4991.CrossRefGoogle ScholarPubMed
Pillai, M.C. & Clark, W.H. Jr, (1987). Oocyte activation in the marine shrimp, Sicyonia ingentis. J. Exp. Zool. 244, 325–9.CrossRefGoogle Scholar
Pillai, M.C., Griffin, F.J. & Clark, W.H. Jr, (1988). Induced spawning of the decapod crustacean Sicyonia ingentis. Biol. Bull. 174, 181–5.CrossRefGoogle Scholar
Salmon, E.D. (1982). Mitotic spindles isolated from sea urchin eggs EGTA lysis buffers. Methods Cell Biol. 25, 70105.Google ScholarPubMed
Sathananthan, A.H., Kola, I., Osborne, J., Trouson, A., Ng, S.C. & Bongso, A. (1991). Centrioles at the beginning of human development. Proc. Natl. Acad. sci., USA 88, 4806–10.CrossRefGoogle ScholarPubMed
Sawada, T. & Schatten, G. (1988). Microtubules in ascidian eggs during meiosis, fertilization, and mitosis. Cell. Motil. 9, 219–30.CrossRefGoogle ScholarPubMed
Schatten, G., Balczon, R., Cline, C. & Schatten, H. (1982). EHNA, a dynein inhibitor, blocks the nuclear movements during sea urchin fertilization. J.Cell Biol. 95, 166a.Google Scholar
Schatten, G., Simerly, C. & Schatten, H. (1985). Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc. Natl. Acad. Sci. 82, 4152–6.CrossRefGoogle ScholarPubMed
Schatten, H., Walter, M., Mazia, D., Biessman, H., Paweletz, N. & Schatten, G. (1987). Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes. Proc. Natl. Acad.sci., USA 84, 84888492.CrossRefGoogle ScholarPubMed
Shigekawa, K. & Clark, W.K. Jr (1986). Spermiogenesis in the marine shrimp Sicyonia ingentis. Dev. Growth Differ. 28, 95112.CrossRefGoogle ScholarPubMed
Sluder, G. (1976). Experimental manipulation of the amount of tubulin available for assembly into the spindle of dividing sea urchin eggs. J. Cell Biol. 70, 7585.CrossRefGoogle ScholarPubMed
Sluder, G. (1991). The practical use of colchicine and colcemid to reversibly block microtubule assembly in living cells. In: Advanced Techniques in Chromosome Research, ed. Adolph, K.W., pp. 427–47. New York: Marcel Dekker.Google Scholar
Sluder, G., Miller, F.J., Lewis, K., Davison, E.D. & Reider, C.L. (1989 a). Centrosome inheritance in starfish zygotes: selective loss of the maternal centrosome after fertilization. Dev. Biol. 131, 567–79.CrossRefGoogle ScholarPubMed
Sluder, G., Miller, F.J. & Reider, C.L. (1989 b). Reproductive capacity of sea urchin centrosomes without centrioles. Cell Motil. 13, 264–73.CrossRefGoogle ScholarPubMed
Sluder, G., Miller, F.J. & Lewis, K. (1993). Centrosome inheritance in starfish zygotes. II: Selective suppression of the maternal centrosome during meiosis. Dev. Biol. 155, 5867.CrossRefGoogle ScholarPubMed
Sullivan, W., Minden, J.S. & Alberts, B.M. (1990). daughterless–abo–like a Drosophila maternal effects mutation that exhibits abnormal divisions. Development 110, 311–24.CrossRefGoogle Scholar
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci., USA 76, 4350–4.CrossRefGoogle ScholarPubMed
Wilson, E.B. (1925). The Cell in Development and Heredity, 3rd edn.New York: Macmillan.Google Scholar
Yang, C.H., Lambie, E.J. & Snyder, M. (1992). NuMA: an unusually long coiled-coil related protein in the mammalian nucleus. J. Cell Biol. 116, 1303–17.CrossRefGoogle ScholarPubMed
Zilch, R. (1979). Cell lineage in arthropods? Fortschr Zool. Syst. Evolutionforsch. 1, 1941.Google Scholar