Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T23:05:50.921Z Has data issue: false hasContentIssue false

In vitro fertilisation of maize by single egg and sperm cell protoplast fusion mediated by high calcium and high pH

Published online by Cambridge University Press:  26 September 2008

Erhard Kranz*
Affiliation:
Institut für Allgemeine Botanik, University of Hamburg, Hamburg, Germany.
Horst Lörz
Affiliation:
Institut für Allgemeine Botanik, University of Hamburg, Hamburg, Germany.
*
Erhard Kranz, Insitut für Allgemeine Botanik, Angewandte Molekulabiologie der Pflanzen II, Universität Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany. Tel: ++49/40/822 82 227. Fax:+ +49/40/822 82 229.

Summary

We present evidence for the fusion of isolated single maize egg and sperm cell protoplasts in a mannitol solution (400–430 mosmol/kg H2O) containing 0.05 M CaCl2 at pH 11.0, followed by cell division of the fusion products. These findings allow the performance of in vitro fertilisation of higher plants by combining single gametes as in lower plant and animal systems. Further, our findings open new avenues for investigating the basic mechanisms of adhesion and fusion of higher plant gametes and eventually for examining processes that inhibit polyspermy in higher plants.

Type
Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boss, W.F., Grimes, H.D. & Brightman, A. (1984). Calcium-induced fusion of fusogenic wild carrot protoplasts. Protoplasma. 120, 209–15.CrossRefGoogle Scholar
Cass, D.D. & Fabi, G.C. (1988). Structure and properties of sperm cells isolated from pollen of Zea mays. Can. J Bot. 66, 819–25.CrossRefGoogle Scholar
Chasan, R. (1992). Frontiers in fertilization. Plant Cell 4, 369–72.CrossRefGoogle ScholarPubMed
Chasan, R. (1993). Test-tube plants: the first of a new crop? Plant Cell 5, 718–19.CrossRefGoogle Scholar
Chaubal, R. & Reger, B.J. (1990). Relatively high calcium is localized in synergid cells of wheat ovaries. Sex. Plant Reprod. 3, 98102.CrossRefGoogle Scholar
Chaubal, R. & Reger, B.J. (1992 a). Calcium in the synergid cells and other regions of pearl millet ovaries. Sex. plant Reprd. 5 3446.CrossRefGoogle Scholar
Chaubal, R. & Reger, B.J. (1992b). The dynamics of calcium distribution in the synergid cells of wheat following pollination Sex. Plant Reprod. 5 206–13.CrossRefGoogle Scholar
Chaubal, R. & Reger, B.J. (1993). Prepollination degeneration in mature synergids of pearl millet: an examination using antimonate fixation to localize calcium. Sex. Plant Reprod. 6 225–38.CrossRefGoogle Scholar
Creutz, C.E. (1992). The annexins and exocytosis. Science 258, 924–31.CrossRefGoogle ScholarPubMed
Dupuis, I., Roeckel, P., Matthys-Rochon, E. & Dumas, C. (1987). Procedure to isolate viable sperm cells from corn (Zea mays L.) pollen grains. Plant physiol. 85, 876–8.CrossRefGoogle ScholarPubMed
Duzgunes, N.Wilschut, J., Fraley, R. & Papahadjopoulos, D. (1981). Studies on the mechanism of membrane fusion: role of head-group composition in calcium and magnesium-induced fusion of mixed phospolipid vesicles. Biochim. Biophys Acta 642 182–95.CrossRefGoogle Scholar
Faure, J.-E.Mogensen, L.Dumas, C., Lörz, H. & KranZ, E. (1993). Karyogamy after electrofusion of single egg and sperm cell protoplasts from maize: cytological evidence and time course. Plant Cell 5, 747–55.CrossRefGoogle ScholarPubMed
Goodman, B. (1993). A ‘shotgun wedding’ finally produces test-tube plants. Science 261,430.CrossRefGoogle ScholarPubMed
Grimes, H.D. & Boss, W.F. (1985). Intracellular calcium and calmodulin involvement in protoplast fusion. Plant Physiol. 79, 253–8.CrossRefGoogle ScholarPubMed
He, C.-P. & Yang, H.-Y. (1992). Ultracytochemical localization of calcium in the embryo sac of sunflower. Chin.J. Bot. 4, 99106.Google Scholar
Huang, B.Q., & Rusell, S.D. (1992 a). Female germ unit: organization, isolation and function. Int. Rev. Cytol. 140, 233–93.CrossRefGoogle Scholar
Huang, B.Q. & Russel, S.D.(1992 b). Synergid degeneration in Nicotiana: a quantitative, flurochromatic and chlorotetracycline study. Sex. plant Reprod. 5, 151–5.CrossRefGoogle Scholar
Keller, W.A. & Melchers, G. (1973).The effect of high pH and calcium on tobacco leaf protoplast fusion. Z.Naturforsch. 28c. 737–41.CrossRefGoogle ScholarPubMed
Koop, H.-U. & Schweiger, H.-G. (1985). Regeneration of plants from individually cultivated protoplasts using an improved microculture system. J. Plant Physiol. 121, 245–57.CrossRefGoogle Scholar
Kranz, E. (1992). In vitro fertilization of maize mediated by electrofusion of single gametes. In: Plant Tissue Culture Manual, ed. Lindsey, K., Suppl. 2, El, pp. 112. Dortrecht:Kluwer.Google Scholar
Kranz, E. & Lorz, H. (1990). Micromanipulation and in vitro fertilization with single pollen grains of maize. Sex. Plant Reprod. 3,160–9.CrossRefGoogle Scholar
Kranz, E. & Lörz, H. (1993). In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5, 739–46.CrossRefGoogle ScholarPubMed
Kranz, E., Bautor, J. & Lörz, H. (1990). In vitro fertilization of single, isolated gametes, transmission of cytoplasmic organelles and cell reconstitution of maize (Zea mays L.) In: Progress in Plant Cellular and Molecular Biology, ed. Nijkamp, H.J.J., van der Plas, L.M.W. & van Aartrijk, I., pp. 252–7. Dortrecht: Kluwer.CrossRefGoogle Scholar
Kranz, E., Bautor, J. & Lörz, H. (1991 a). In vitro fertilization of single, isolated gametes of maize mediated by electrofusion. Sex. Plant Reprod. 4,12–16.CrossRefGoogle Scholar
Kranz, E., Bautor, J. & Lörz, H. (1991 b). Electrofusion-mediated transmission of cytoplasmic organelles through the in vitro fertilization process, fusion of sperm cells with syniergids and central cells, and cell reconstitution in maize. Sex Plant Reprod. 4,17–21.CrossRefGoogle Scholar
Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15,473–9CrossRefGoogle Scholar
Olsen, F.L. (1987). Induction of microspore embryogenesis in cultured anthers of Hordeum vulgare: the effects of ammonium nitrate, glutamine and asparagine as nitrogen sources. Carlsberg Res. Commun. 52, 393404.CrossRefGoogle Scholar
Papahadjopoulos, D. (1978). Calcium-induced phase changes and fusion in natural and model membranes. In: Membrane Fusion, ed. Poste, G. & Nicolson, G.L., pp. 765–90. New York: Elsevier.Google ScholarPubMed
Power, J.B., Cummins, S.E. & Cocking, E.C. (1970). Fusion of isolated protoplasts. Nature 225, 1016–18.CrossRefGoogle Scholar
Russell, S.D. (1992). Double fertilization. Int. Rev. Cytol. 140, 357–88.CrossRefGoogle Scholar
Schakmann, R.W., Eddy, E.M. & Shapiro, B.M. (1978). The acrosome reaction of Strongylocentrotus purpuratis sperm: ion requirements and movements. Dev. Biol. 65, 483–95.CrossRefGoogle Scholar
Spangenberg, G. & Koop, H.-U. (1992). Low density cultures: microdroplets and single cell nurse cultures. In: Plant Tissue Culture Manual, ed. Lindsey, K., A10, pp. 128. Dortrecht: Kluwer.Google Scholar
Tirlapur, U.K., Van Went, J.L. & Cresti, M. (1993). Visualization of membrane calcium and calmodulin in embryo sacs in situ and isolated from Petunia hybrida L. and Nicotiana tabacum L.. Ann. Bot. 71, 161–7.CrossRefGoogle Scholar
Ward, M., Davey, M.R., Mathias, R.J., Cocking, E.C, Clothier, R.H., Balls, M. & Lucy, J.A. (1979). Effects of pH, Ca2+, temperature, and protease pretreatment in interkingdom fusion. Somatic Cell Genet. 5, 529–36.CrossRefGoogle ScholarPubMed
White, J. M. (1992). Membrane fusion. Science 258, 917–24.CrossRefGoogle ScholarPubMed