Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T23:06:28.209Z Has data issue: false hasContentIssue false

Immunohistochemistry and immunocytochemistry analysis of PLZF and VASA in mice testis during spermatogenesis

Published online by Cambridge University Press:  03 April 2023

Mohammad Babatabar Darzi
Affiliation:
Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
Farkhondeh Nemati*
Affiliation:
Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
Hossein Azizi*
Affiliation:
Department of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
Abbasali Dehpour Jouybari
Affiliation:
Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
*
Authors for correspondence: Farkhondeh Nemati. Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran. E-mail: [email protected], and Hossein Azizi. Department of Biotechnology, Amol University of Special Modern Technologies, Taleghani St. Abazar 35, Amol, Mazandaran, 4616849767, Iran. Tel: +98 1144271057. E-mail: [email protected]
Authors for correspondence: Farkhondeh Nemati. Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran. E-mail: [email protected], and Hossein Azizi. Department of Biotechnology, Amol University of Special Modern Technologies, Taleghani St. Abazar 35, Amol, Mazandaran, 4616849767, Iran. Tel: +98 1144271057. E-mail: [email protected]

Summary

Spermatogonial stem cells (SSCs) are the basis of male spermatogenesis and fertility. SSCs are distinguished by their ability to self-renew and differentiate into spermatozoa throughout the male reproductive life and pass genetic information to the next generation. Immunohistochemistry (IHC), immunocytochemistry (ICC) and Fluidigm reverse transcriptase-polymerase chain reaction (RT-PCR) were used to analyze the expression of PLZF and VASA in mice testis tissue. In this experimental study, whereas undifferentiated spermatogonial cells sharply expressed PLZF, other types of germ cells located in the seminiferous tubule were negative for this marker. Conversely, the germ cells near the basal membrane of the seminiferous tubule showed VASA expression, whereas the undifferentiated germ cells located on the basal membrane were negative. The ICC analysis indicated higher expression of PLZF in the isolated undifferentiated cells compared with differentiated germ cells. Fluidigm real-time RT-PCR results demonstrated a significant expression (P < 0.05) of VASA in the SSCs compared with differentiated cells and also showed expression of PLZF in undifferentiated spermatogonia. These results clearly proved the role of PLZF as a specific marker for SSCs, and can be beneficial for advanced research on in vitro differentiation of SSCs to functional sperms.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abofoul-Azab, M., Lunenfeld, E., Levitas, E., Zeadna, A., Younis, J. S., Bar-Ami, S. and Huleihel, M. (2019). Identification of premeiotic, meiotic, and postmeiotic cells in testicular biopsies without sperm from Sertoli cell-only syndrome patients. International Journal of Molecular Sciences, 20(3), 470. doi: 10.3390/ijms20030470 CrossRefGoogle ScholarPubMed
Adikusuma, F., Pederick, D., McAninch, D., Hughes, J. and Thomas, P. (2017). Functional equivalence of the SOX2 and SOX3 transcription factors in the developing mouse brain and testes. Genetics, 206(3), 14951503. doi: 10.1534/genetics.117.202549 CrossRefGoogle ScholarPubMed
Alves-Lopes, J. P. and Stukenborg, J. B. (2018). Testicular organoids: A new model to study the testicular microenvironment in vitro? Human Reproduction Update, 24(2), 176191. doi: 10.1093/humupd/dmx036 CrossRefGoogle Scholar
Amirian, M., Azizi, H., Hashemi Karoii, D. and Skutella, T. (2022). VASA protein and gene expression analysis of human non-obstructive azoospermia and normal by immunohistochemistry, immunocytochemistry, and bioinformatics analysis. Scientific Reports, 12(1), 17259. doi: 10.1038/s41598-022-22137-9 CrossRefGoogle ScholarPubMed
Azizi, H., Conrad, S., Hinz, U., Asgari, B., Nanus, D., Peterziel, H., Hajizadeh Moghaddam, A., Baharvand, H. and Skutella, T. (2016). Derivation of pluripotent cells from mouse SSCs seems to be age dependent. Stem Cells International, 2016, 8216312. doi: 10.1155/2016/8216312 CrossRefGoogle ScholarPubMed
Azizi, H., Niazi Tabar, A. and Mohammadi, A. (2020a). Experimental investigation of Ki67, POU5F1, and ZBTB16 expression in the pig and mouse testicular cells using immunocytochemistry and RT-PCR. Journal of Īlām University of Medical Sciences, 28(5), 110. doi: 10.29252/sjimu.28.5.1 CrossRefGoogle Scholar
Azizi, H., Niazi Tabar, A. N., Skutella, T. and Govahi, M. (2020b). In vitro and in vivo determinations of the anti-GDNF family receptor alpha 1 antibody in mice by immunochemistry and RT-PCR. International Journal of Fertility and Sterility, 14(3), 228233. doi: 10.22074/ijfs.2020.6051 Google ScholarPubMed
Azizi, H., Niazi Tabar, A. and Skutella, T. (2021a). Successful transplantation of spermatogonial stem cells into the seminiferous tubules of busulfan-treated mice. Reproductive Health, 18(1), 189. doi: 10.1186/s12978-021-01242-4 CrossRefGoogle ScholarPubMed
Azizi, H., Niazi Tabar, A., Mohammadi, A. and Skutella, T. (2021b). Characterization of DDX4 gene expression in human cases with non-obstructive azoospermia and in sterile and fertile mice. Journal of Reproduction and Infertility, 22(2), 8591. doi: 10.18502/jri.v22i2.5793 Google ScholarPubMed
Azizi, H., Hashemi Karoii, D. and Skutella, T. (2022). Whole exome sequencing and in silico analysis of human Sertoli in patients with non-obstructive azoospermia. International Journal of Molecular Sciences, 23(20), 12570. doi: 10.3390/ijms232012570 CrossRefGoogle ScholarPubMed
Barrionuevo, F., Georg, I., Scherthan, H., Lécureuil, C., Guillou, F., Wegner, M. and Scherer, G. (2009). Testis cord differentiation after the sex determination stage is independent of Sox9 but fails in the combined absence of Sox9 and Sox8. Developmental Biology, 327(2), 301312. doi: 10.1016/j.ydbio.2008.12.011 CrossRefGoogle ScholarPubMed
Bian, Q., Qian, J., Xu, L., Chen, J., Song, L. and Wang, X. (2006). The toxic effects of 4-tert-octylphenol on the reproductive system of male rats. Food and Chemical Toxicology, 44(8), 13551361. doi: 10.1016/j.fct.2006.02.014 CrossRefGoogle ScholarPubMed
Grasso, M., Fuso, A., Dovere, L., De Rooij, D. G., Stefanini, M., Boitani, C. and Vicini, E. (2012). Distribution of GFRA1-expressing spermatogonia in adult mouse testis. Reproduction, 143(3), 325332. doi: 10.1530/REP-11-0385 CrossRefGoogle ScholarPubMed
Guan, Y., Liang, G., Martin, G. B. and Guan, L. L. (2017). Functional changes in mRNA expression and alternative pre-mRNA splicing associated with the effects of nutrition on apoptosis and spermatogenesis in the adult testis. BMC Genomics, 18(1), 64. doi: 10.1186/s12864-016-3385-8 CrossRefGoogle ScholarPubMed
Gustafson, E. A. and Wessel, G. M. (2010). Vasa genes: Emerging roles in the germ line and in multipotent cells. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 32(7), 626637. doi: 10.1002/bies.201000001 CrossRefGoogle ScholarPubMed
Hashemi Karoii, D. and Azizi, H. (2022). A review of protein–protein interaction and signaling pathway of vimentin in cell regulation, morphology and cell differentiation in normal cells. Journal of Receptors and Signal Transduction, 19.Google ScholarPubMed
Hashemi Karoii, D., Azizi, H. and Skutella, T. (2022). Microarray and in silico analysis of DNA repair genes between human testis of patients with nonobstructive azoospermia and normal cells. Cell Biochemistry and Function, 40(8), 865879. doi: 10.1002/cbf.3747 CrossRefGoogle ScholarPubMed
Kanatsu-Shinohara, M., Ogonuki, N., Matoba, S., Morimoto, H., Shiromoto, Y., Ogura, A. and Shinohara, T. (2022). Regeneration of spermatogenesis by mouse germ cell transplantation into allogeneic and xenogeneic testis primordia or organoids. Stem Cell Reports, 17(4), 924935. doi: 10.1016/j.stemcr.2022.02.013 CrossRefGoogle ScholarPubMed
Kanbar, M., Vermeulen, M. and Wyns, C. (2021). Organoids as tools to investigate the molecular mechanisms of male infertility and its treatments. Reproduction, 161(5), R103R112. doi: 10.1530/REP-20-0499 CrossRefGoogle ScholarPubMed
Kang, K., Niu, B., Wu, C., Hua, J. and Wu, J. (2020). The construction and application of lentiviral overexpression vector of goat miR-204 in testis. Research in Veterinary Science, 130, 5258. doi: 10.1016/j.rvsc.2020.02.014 CrossRefGoogle ScholarPubMed
Karoii, D. H., Azizi, H. and Amirian, M. (2022). Signaling pathways and protein–protein interaction of vimentin in invasive and migration cells: A review. Cellular Reprogramming, 24(4), 165174. doi: 10.1089/cell.2022.0025 CrossRefGoogle ScholarPubMed
Khadivi, F., Koruji, M., Akbari, M., Jabari, A., Talebi, A., Ashouri Movassagh, S., Panahi Boroujeni, A., Feizollahi, N., Nikmahzar, A., Pourahmadi, M. and Abbasi, M. (2020). Application of platelet-rich plasma (PRP) improves self-renewal of human spermatogonial stem cells in two-dimensional and three-dimensional culture systems. Acta Histochemica, 122(8), 151627. doi: 10.1016/j.acthis.2020.151627 CrossRefGoogle ScholarPubMed
Li, H., Liang, Z., Yang, J., Wang, D., Wang, H., Zhu, M., Geng, B. and Xu, E. Y. (2019). DAZL is a master translational regulator of murine spermatogenesis. National Science Review, 6(3), 455468. doi: 10.1093/nsr/nwy163 CrossRefGoogle ScholarPubMed
Marcon, L., Zhang, X., Hales, B. F., Robaire, B. and Nagano, M. C. (2011). Effects of chemotherapeutic agents for testicular cancer on rat spermatogonial stem/progenitor cells. Journal of Andrology, 32(4), 432443. doi: 10.2164/jandrol.110.011601 CrossRefGoogle ScholarPubMed
Moraveji, S. F., Esfandiari, F., Sharbatoghli, M., Taleahmad, S., Nikeghbalian, S., Shahverdi, A. and Baharvand, H. (2019). Optimizing methods for human testicular tissue cryopreservation and spermatogonial stem cell isolation. Journal of Cellular Biochemistry, 120(1), 613621. doi: 10.1002/jcb.27419 CrossRefGoogle ScholarPubMed
Niazi Tabar, A., Azizi, H., Hashemi Karoii, D. and Skutella, T. (2022a). Testicular localization and potential function of vimentin positive cells during spermatogonial differentiation stages. Animals: An Open Access Journal from MDPI, 12(3), 268. doi: 10.3390/ani12030268 CrossRefGoogle ScholarPubMed
Niazi Tabar, A. N., Sojoudi, K., Henduei, H. and Azizi, H. (2022b). Review of Sertoli cell dysfunction caused by COVID-19 that could affect male fertility. Zygote, 30(1), 1724. doi: 10.1017/S0967199421000320 CrossRefGoogle ScholarPubMed
Onohara, Y., Fujiwara, T., Yasukochi, T., Himeno, M. and Yokota, S. (2010). Localization of mouse vasa homolog protein in chromatoid body and related nuage structures of mammalian spermatogenic cells during spermatogenesis. Histochemistry and Cell Biology, 133(6), 627639. doi: 10.1007/s00418-010-0699-5 CrossRefGoogle ScholarPubMed
Rahmani, F., Movahedin, M., Mazaheri, Z. and Soleimani, M. (2019). Transplantation of mouse iPSCs into testis of azoospermic mouse model: In vivo and in vitro study. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 15851594. doi: 10.1080/21691401.2019.1594854 CrossRefGoogle ScholarPubMed
Rezaei Topraggaleh, T., Rezazadeh Valojerdi, M., Montazeri, L. and Baharvand, H. (2019). A testis-derived macroporous 3D scaffold as a platform for the generation of mouse testicular organoids. Biomaterials Science, 7(4), 14221436. doi: 10.1039/c8bm01001c CrossRefGoogle ScholarPubMed
Richer, G., Baert, Y. and Goossens, E. (2020). In-vitro spermatogenesis through testis modelling: Toward the generation of testicular organoids. Andrology, 8(4), 879891. doi: 10.1111/andr.12741 CrossRefGoogle ScholarPubMed
Sakib, S., Voigt, A., Goldsmith, T. and Dobrinski, I. (2019). Three-dimensional testicular organoids as novel in vitro models of testicular biology and toxicology. Environmental Epigenetics, 5(3), dvz011. doi: 10.1093/eep/dvz011 CrossRefGoogle ScholarPubMed
Sakib, S., Goldsmith, T., Voigt, A. and Dobrinski, I. (2020). Testicular organoids to study cell–cell interactions in the mammalian testis. Andrology, 8(4), 835841. doi: 10.1111/andr.12680 CrossRefGoogle ScholarPubMed
Shi, Y. and Ai, W. (2013). Function of KLF4 in stem cell biology. In: Bhartiya, D. and Lenka, N. (eds). Pluripotent Stem Cells. doi: 10.5772/54370 Google Scholar
Shukalyuk, A. I., Golovnina, K. A., Baiborodin, S. I., Gunbin, K. V., Blinov, A. G. and Isaeva, V. V. (2007). Vasa-related genes and their expression in stem cells of colonial parasitic rhizocephalan barnacle Polyascus polygenea (Arthropoda: Crustacea: Cirripedia: Rhizocephala). Cell Biology International, 31(2), 97108. doi: 10.1016/j.cellbi.2006.09.012 CrossRefGoogle ScholarPubMed
Strange, D. P., Zarandi, N. P., Trivedi, G., Atala, A., Bishop, C. E., Sadri-Ardekani, H. and Verma, S. (2018). Human testicular organoid system as a novel tool to study Zika virus pathogenesis. Emerging Microbes and Infections, 7(1), 82. doi: 10.1038/s41426-018-0080-7 CrossRefGoogle ScholarPubMed
Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J. and von Mering, C. (2021). The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605D612. doi: 10.1093/nar/gkaa1074 CrossRefGoogle ScholarPubMed
Turnbull, C., Rapley, E. A., Seal, S., Pernet, D., Renwick, A., Hughes, D., Ricketts, M., Linger, R., Nsengimana, J., Deloukas, P., Huddart, R. A., Bishop, D. T., Easton, D. F., Stratton, M. R., Rahman, N. and Testicular Cancer Collaboration, UK. (2010). Variants near DMRT1, tert and ATF7IP are associated with testicular germ cell cancer. Nature Genetics, 42(7), 604607. doi: 10.1038/ng.607 CrossRefGoogle ScholarPubMed
Wei, Y., Yang, D., Du, X., Yu, X., Zhang, M., Tang, F., Ma, F., Li, N., Bai, C., Li, G. and Hua, J. (2021). Interaction between DMRT1 and PLZF protein regulates self-renewal and proliferation in male germline stem cells. Molecular and Cellular Biochemistry, 476(2), 11231134. doi: 10.1007/s11010-020-03977-3 CrossRefGoogle ScholarPubMed
Yamaguchi, S., Kimura, H., Tada, M., Nakatsuji, N. and Tada, T. (2005). Nanog expression in mouse germ cell development. Gene Expression Patterns, 5(5), 639646. doi: 10.1016/j.modgep.2005.03.001 CrossRefGoogle ScholarPubMed
Zheng, Y., Feng, T., Zhang, P., Lei, P., Li, F. and Zeng, W. (2020). Establishment of cell lines with porcine spermatogonial stem cell properties. Journal of Animal Science and Biotechnology, 11, 33. doi: 10.1186/s40104-020-00439-0 CrossRefGoogle ScholarPubMed