Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T18:13:31.617Z Has data issue: false hasContentIssue false

Histological and morphometric study of the epididymus of Chinchilla lanigera Grey under controlled conditions in captivity

Published online by Cambridge University Press:  21 July 2015

M.C. Gramajo-Bühler*
Affiliation:
Departamento de Biología del Desarrollo, Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina.
F.J. Pucci
Affiliation:
Fundación Miguel Lillo, Instituto de Morfología Aninal (IMA), Miguel Lillo 251, San Miguel de Tucumán, 4000 Tucumán, Argentina.
G. Sanchez-Toranzo
Affiliation:
Universidad Nacional de Tucumán, Ayacucho 471, San Miguel de Tucumán, 4000 Tucumán, Argentina.
*
All correspondence to: María Cecilia Gramajo-Bühler. Departamento de Biología del Desarrollo, Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina. Tel: +54 0381 4247752 int. 7093. Fax: +54 0381 4247752 int. 7004. E-mail: [email protected]

Summary

Chinchilla lanigera, native to the Andean Mountains of Perú, Chile, Bolivia and Argentina, is a specimen of great economic importance because of its fur. In mammals, spermatozoa originate in testes and are transported to the epididymis, where they undergo morphological and biochemical modifications known as sperm maturation, a basic step in the acquisition of their fertilizing ability. The aim of this work is the macroscopic and microscopic analysis of the epididymis of Chinchilla lanigera Grey and its sectorization based on a histomorphological study. The epididymis presents a clear segmentation into four regions: initial segment, caput, corpus and cauda. The epithelium lining the seminiferous tubules is pseudostratified, with principal cells with stereocilia and basal, clear, apical, narrow and halo cells. The histological analysis showed that principal and basal cells are the prevailing populations in all regions, also revealing narrow cells and the absence of clear cells in the initial segment. Each segment presents its different histological and morphometric characteristics, which supports the idea of the specific behaviour of each region, giving a segment-specific character to the process of sperm maturation in this species. No significant differences were found in the morphometric measurements or in the histological evaluation of the epididymis of samples collected in April and October. The fact that no differences were found between the samples collected during the two periods when the reproductive ability in nature is different suggests the importance of external factors in the control of the reproductive cycle of Chinchilla lanigera.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamali, H.I. & Hermo, L. (1996). Apical and narrow cells are distinct cell types differing in their structure, distribution, and functions in the adult rat epididymis. J. Androl. 17, 208–22.Google Scholar
Adaro, L., Parraguez, V.H., Orostegui, C., Urquieta, B. & Cepeda, C. (2002). Variación anual de la concentración de testosterona plasmática en Chinchilla laniger (GREY) en cautiverio. Avances en Ciencias Veterinarias 17, 25–8.Google Scholar
Aguilera-Merlo, C., Muñoz, E., Dominguez, S., Scardapane, L. & Piezzi, R. (2005). Epididymis of viscacha (Lagostomus maximus maximus): morphological changes during the annual reproductive cycle. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 282, 8392.Google Scholar
Amann, R.P. (1962). Reproductive capacity of dairy bulls. III. The effect of ejaculation frequency, unilateral vasectomy, and age on spermatogenesis. Am. J. Anat. 110, 4967.Google Scholar
Alkafafy, M., Elnasharty, M., Sayed-Ahmed, A. & Abdrabou, M. (2011). Immunohistochemical studies of the epididymal duct in Egyptian water buffalo (Bubalus bubalis). Acta Histochem. 113, 96102.CrossRefGoogle ScholarPubMed
Au, C.L. & Wong, P.Y.D. (1980). Luminal acidification by the perfused rat cauda epididymis. J. Physiol. 309, 419–27.CrossRefGoogle Scholar
Axnér, E. (2006). Sperm maturation in the domestic cat. Theriogenology 66, 1424.CrossRefGoogle ScholarPubMed
Beagley, K.W., Wu, Z.L., Pomering, M. & Jones, R.C. (1998). Immune responses in the epididymis: implications for immunocontraception. J. Reprod. Fertil. Suppl. 53, 235–45.Google ScholarPubMed
Bedford, J.M. (1963). Morphological changes in rabbit spermatozoa during passage through the epididymis. J. Reprod. Fertil. 5, 169–77.Google Scholar
Bedford, J.M. (1965). Changes in fine structure of the rabbit sperm head during passage through the epididymis. J. Anat. 99, 891906.Google ScholarPubMed
Bedford, J.M. (1966). Development of the fertilizing ability of spermatozoa in the epididymis of the rabbit. J. Exp. Zool. 163, 319–29.Google Scholar
Bedford, J.M., Calvin, H. & Cooper, G.W. (1973). The maturation of spermatozoa in the human epididymis. J. Reprod. Fertil. Suppl. 18, 199213.Google Scholar
Beu, C.C.L., Orsi, A.M., Stefanini, M.A. & Cruz, C. (2001). Morphological and morphometric characteristics of the epididymal initial segment of the Golden hamster. Braz. J. Morphol. Sci. 18, 133.Google Scholar
Blomqvist, S.R., Vidarsson, H., Soder, O. & Enerback, S. (2006). Epididymal expression of the fork head transcription factor Foxi1 is required for male fertility. EMBO J. 25, 4131–41.Google Scholar
Breton, S., Smith, P.J., Lui, B. & Brown, D. (1996). Acidification of the male reproductive tract by a proton pumping (H)-ATPase. Nat. Med. 2, 470–2.CrossRefGoogle ScholarPubMed
Cepeda, R., Peñailillo, P., Urquieta, B. & Orostegui, C. (1999). Variaciones estacionales de las glándulas bulbouretrales de la Chinchilla lanígera en cautiverio. Aspectos morfológicos y endocrinos. In X Congreso Nacional de Medicina Veterinaria, Valdivia, pp. 113–4.Google Scholar
Cepeda, R., Adaro, A.L. & Peñailillo, P. (2006). Morphometric variations of Chinchilla lanigera prostate and plasmatic testosterone concentration during its annual reproductive cycle. Int. J. Morphol. 24, 8997.Google Scholar
Cohen, J.P., Hoffer, A.P. & Rosen, S. (1976). Carbonic anhydrase localization in the epididymis and testis of the rat: histochemical and biochemical analysis. Biol. Reprod. 14, 339–46.Google Scholar
Dacheux, J.L., Gatti, J.L. & Dacheux, F. (2003). Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc. Res. Tech. 161, 717.Google Scholar
Frenette, G. & Sullivan, R. (2001) Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol. Reprod. Dev. 59, 115–21.Google Scholar
Frenette, G., Legare, C., Saez, F. & Sullivan, R. (2005). Macrophage migration inhibitory factor in the human epididymis and semen. Mol. Hum. Reprod. 11, 575–82.CrossRefGoogle ScholarPubMed
Frohlich, O. & Young, L.G. (1996). Molecular cloning and characterization of EPI-1, the major protein in chimpanzee (Pan troglodytes) cauda epididymal fluid. Biol. Reprod. 54, 857–64.Google Scholar
Garcia, X., Neira, R. & Scheu, R. (1989). Variación ambiental en caracteristicas reproductivas en chinchillas (Chinchilla laniger Grey) en confinamiento. Avances en Producción Animal 14 (1–2), 121–7.Google Scholar
Gatti, J.L., Metayer, S., Belghazi, M., Dacheux, F. & Dacheux, J.L. (2005). Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol. Reprod. 72, 1452–65.CrossRefGoogle ScholarPubMed
Glade, A. (1988). Libro Rojo de los Vertebrados Chilenos. Santiago, Chile: CONAF, Ministerio de Agricultura, 65 pp.Google Scholar
Goyal, H.O. (1985). Morphology of the bovine epididymis. Am. J. Anat. 172, 155–72.Google Scholar
Hamilton, D.W. (1975). Structure and function of the epithelium lining the ductuli efferentes, ductus epididymidis and ductus deferens in the rat. In Handbook of Physiology, vol. 5, section 7 (eds Greep, R.O. & Astwood, E.B.), pp. 259301. Washington, DC: American Physiological Society.Google Scholar
Hejmej, A., Kotula-Balak, M., Sadowska, J. & Bilinska, B. (2007). Expression of connexin 43 protein in testes, epididymides and prostates of stallions. Equine Vet. J. 2007 39, 122–7.CrossRefGoogle ScholarPubMed
Hermo, L., Adamali, H.I., Mahuran, D., Gravel, R.Y. & Trasler, J.M. (1996). B-hexosaminidase gene expression and enzyme immunolocalization in the rat testis and epididymis. Mol. Reprod. Dev. 46, 227–42.Google Scholar
Hubbard, A.L. (1989). Endocytosis. Curr. Opin. Cell. Biol. 1, 675–83.CrossRefGoogle ScholarPubMed
Legare, C., Berube, B., Boue, F., Lefievre, L., Morales, C.R., El-Alfy, M. & Sullivan, R. (1999). Hamster sperm antigen P26h is a phosphatidylinositol-anchored protein. Mol. Reprod. Dev. 52, 225–33.Google Scholar
Murphy, R.E. (1991). Maturation models for endosome and lysosome biogenesis. Trends Cell. Biol. 1, 7782.CrossRefGoogle ScholarPubMed
Neira, R. (1987). Chinchilla: explotación y perspectivas de desarrollo en Chile. Próxima Década 59, 46.Google Scholar
Neira, R., Garcia, X. & Scheu, R. (1989). Analisis descriptivo del comportamiento reproductivo y de crecimiento de chinchillas (Chinchilla laniger Grey) en confinamiento. Avances en Producción Animal 14 (12), 109–19.Google Scholar
Orgebin-Crist, M.C. (1968). Maturation of spermatozoa in the rabbit epididymis: delayed fertilization in does inseminated with epididymal spermatozoa. J. Reprod. Fertil. 16, 2933.Google Scholar
Orostegui, C., Parraguez, V., Adaro, L., Peñailillo, P. & Cepeda, R. (2000). Histological and morphometric changes of the seminal vesicles of Chinchilla laniger (grey) in captivity, induced by seasonal variations. Rev. Chil. Anat. 18, 8996.Google Scholar
Orsi, A.M., Mello Dias, S., Valente, M.M. & Vicentini, C.A. (1985). Histologia regional do epidídimo do porco (Sus scrofa domestica). Estudo de microscopia óptica. Rev. Port. Cienc. Veter. 80, 215–24.Google Scholar
Pastor-Soler, N.M., Hallows, K.R., Smolak, C., Gong, F., Brown, D. & Breton, S. (2008). Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells. Am. J. Physiol. Cell. Physiol. 294, C48894.CrossRefGoogle ScholarPubMed
Ramos, A.S. Jr & Dym, M. (1977). Fine structure of the monkey epididymis. Am. J. Anat. 149, 501–32.Google Scholar
Rejraji, H., Sion, B., Prensier, G., Carreras, M., Motta, C., Frenoux, J.M., Vericel, E., Grizard, G., Vernet, P. & Drevet, J.R. (2006). Lipid remodelling of murine epididymosomes and spermatozoa during epididymal maturation. Biol. Reprod. 74, 1104–13.Google Scholar
Rodriguez, J. (1988). Crianza de Chinchillas. El Campesino, pp. 26–40.Google Scholar
Schön, J. & Blottner, S. (2009). Seasonal variations in the epididymis of the roe deer (Capreolus capreolus). Anim. Reprod. Sci. 111, 344–52.Google Scholar
Serre, V. & Robaire, B. (1998). Segment-specific morphological changes in aging Brown Norway rat epididymis. Biol. Reprod. 58, 497513.Google Scholar
Serre, V. & Robaire, B. (1999). Distribution of immune cells in the epididymis of theaging Brown Norway rat is segment-specific and related to the luminal content. Biol. Reprod. 61, 705–14.Google Scholar
Sun, E.L. & Flickinger, C.J. (1982). Proliferative activity in the rat epididymis during postnatal development. Anat. Rec. 203, 273–84.Google Scholar
Thornback, J. & Jenkis, M. (1982). The IUCN Mammal Red Data Book. Part 1: Threatened Mammalian Taxa of the Americas and the Austrasia Zoogeographic Region (Excluding Cetacea). Switzerland: International Union Conservation Natural Gland, 516 pp.Google Scholar
Vicentini, C.A. & Orsi, A.M. (1987). Histologia regional do epidídimo no hamster champanha (Mesocricetus auratus). Rev. Brasil. Biol. 47, 277–81.Google Scholar
Wang, Y.F. & Holstein, A.F. (1983). Intraepithelial lymphocytes and macrophages in the human epididymis. Cell Tissue Res. 233, 517–21.Google Scholar
Weir, B. (1972). The Chinchilla. The UFAW Handbook on the Care and Management of Laboratory Animals, 4th edn, pp. 269–77. Edinburgh, Livingston.Google Scholar
Yanagimachi, R., Kamiguchi, Y., Mikamo, K., Suzuki, F. & Yanagimachi, H. (1985) Maturation of spermatozoa in the epididymis of the Chinese hamster. Am. J. Anat. 172, 317–30.Google Scholar
Yoshinaga, K. & Toshimori, K. (2003). Organization and modifications of sperm acrosomal molecules during spermatogenesis and epididymal maturation. Microsc. Res. Tech. 1, 61, 39–45.Google Scholar