Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-16T07:43:05.713Z Has data issue: false hasContentIssue false

Glycerol decreases the integrity of the perinuclear theca in boar sperm

Published online by Cambridge University Press:  05 April 2012

Marco Antonio Arenas Núñez
Affiliation:
Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México D.F. C.P. 04510, México.
María de Lourdes Juárez-Mosqueda
Affiliation:
Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México D.F. C.P. 04510, México.
Oscar Gutiérrez-Pérez
Affiliation:
Departamento de Medicina Experimental del Instituto Nacional de Pediatría, México, México D.F. C.P. 04530, México.
Santiago René Anzaldúa Arce*
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, México, D.F. México.
Alejandro Córdova Izquierdo
Affiliation:
Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco.
Roberto Martínez Rodríguez
Affiliation:
Centro de Enseñanza, investigación y extensión en producción porcina.
María Elena Trujillo Ortega
Affiliation:
Departamento de Producción Animal Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México D.F. C.P. 04510, México.
*
All correspondence to: Santiago René Anzaldúa Arce. Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, México, D.F. México, Tel:/Fax: +5255 5622 5893. e-mail: [email protected]

Summary

We evaluated the effect of glycerol on the perinuclear theca (PT) of boar sperm. Samples from six ejaculates obtained from three different boars were incubated in the detergent Brij 36-T. Spermatozoa were treated with a glycerol concentration of either 2 or 4%, and incubated for 10 or 30 min; two other samples were treated with protease inhibitors (PI; leupeptin or an inhibitor commercial cocktail), mixed with 4% glycerol, and incubated for 30 min. A third glycerol-free group was used as the control. The samples were processed for electron microscopy evaluation. The PT remained intact in 78% of the control samples while, after addition of glycerol for 30 min, the proportion of spermatozoa with disrupted or absent PT increased (P < 0.05). PT was preserved in PI samples, but PT changes increased (P < 0.05). Differences due to treatment with glycerol (2 or 4%) at 10 or 30 min were not observed. These results show, to our knowledge for the first time, the adverse effect of glycerol on the integrity of the PT.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almlid, T. & Johnson, L.A. (1988). Effects of glycerol concentration, equilibration time and temperature of glycerol addition on post-thaw viability of boar spermatozoa frozen in straws. Anim. Reprod. Sci. 66, 2899–905.Google ScholarPubMed
Arancibia-Salinas, K., Juárez-Mosqueda, M.L., Montaldo, H.H., Gutiérrez, C.G., Trujillo, O.E.M., Hernández-González, E.O. & Muñoz, G.R. (2007). Morphological perinuclear theca alterations are related to acrosome loss in cryopreserved boar spermatozoa. Vet. Res. 1, 4956.Google Scholar
Barrientos-Morales, M., Arancibia-Salinas, K., Trujillo, O.M.E., Muñoz-Gotera, R.J., Montiel-Palacios, F. & Juárez-Mosqueda, M.L. (2009). Is there relationship between the PT-substructure and acrosome loss of boar spermatozoa following freezing-thawing or acrosomal reaction. J. Anim. Vet. A. 8, 155–64.Google Scholar
Cerolini, S., Maldjian, A., Pizzi, F. & Gliozzi, T.M. (2001). Changes in sperm quality and lipid composition during cryopreservation of boar semen. Reproduction 121, 395401.CrossRefGoogle ScholarPubMed
Córdova, I.A., Perez, J.F., Lleo, B., Garcia, A. & Martin Rillo, S. (2001). In vitro fertilizing capacity of deep frozen boar semen packaged in 0.5 and 5 ml straws. Reprod. Dom. Anim. 36, 199202.CrossRefGoogle ScholarPubMed
Courtens, J.L., Courot, M. & Fléchon, J.E. (1976). The perinuclear substances of boar, bull, ram and rabbit spermatozoa. J. Ultrastruct. Res. 57, 5464.CrossRefGoogle ScholarPubMed
Crabo, B. & Einarsson, S. (1971). Fertility of deep frozen boar spermatozoa. Acta Vet. Scand. 12, 125–7.Google ScholarPubMed
Escalier, D. (2006). Arrest of flagellum morphogenesis with fibrous sheath immaturity of human spermatozoa. Andrologia 38, 5460.CrossRefGoogle ScholarPubMed
Fiser, P.S. & Fairfull, R.W. (1990). Combined effects of glycerol concentration and cooling velocity on motility and acrosomal integrity boar spermatozoa frozen in 0.5 ml straws. Mol. Reprod. Dev. 25, 123–9.CrossRefGoogle ScholarPubMed
Fiser, P.S., Fairfull, R.W., Hansen, C., Panich, P.L., Shrestha, J.N.B. & Underhill, L. (1993). The effects of warming velocity on motility and acrosomal integrity of boar sperm as influenced by the rate of freezing and glycerol level. Mol. Reprod. Dev. 34, 190–5.CrossRefGoogle ScholarPubMed
Fiser, P.S., Fairfull, R.W. & Panich, P.L. (1995). Glycerol equilibration time revisited. Reprod. Dom. Anim. 31, 141–6.CrossRefGoogle Scholar
Fouquet, J.P. & Kann, M.L. (1994). The cytoskeleton of mammalian spermatozoa. Biol. Cell. 81, 8993.CrossRefGoogle ScholarPubMed
Fulton, A. (1984). The Cytoskeleton: Cellular Architecture and Choreography. Chapman & Hall, London.CrossRefGoogle Scholar
Gutiérrez-Pérez, O. (2006). Correlación del daño de la teca perinuclear y la descondensación del núcleo del espermatozoide criopreservado del cerdo. Tesis de Maestría, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México.Google Scholar
Hafez, E.S.E. (1997). Reproducción e Inseminación Artificial en Animales, Interamericana, México. pp. 632–44.Google Scholar
Hammerstedt, R.H. & Graham, J.K. 1992. Cryopreservation of poultry sperm: the enigma of glycerol. Cryobiology 29, 2638.CrossRefGoogle ScholarPubMed
Healey, P. (1969). Effect of freezing on the ultrastructure of the spermatozoon of some domestics animals. J. Reprod. Fertil. 18, 21–7.CrossRefGoogle ScholarPubMed
Jones, R.C. (1973). Changes occurring in the head of boar spermatozoa: vesiculation or vacuolation of the acrosome. J. Reprod. Fertil. 33, 113–8.CrossRefGoogle ScholarPubMed
Juárez, M. M. L. & Mújica, A. (1999). A perinuclear theca substructure is formed during epididymal guinea pig sperm maturation and disappears in acrosome reacted cells. J. Struc. Biol. 128, 225–36.Google Scholar
Juárez-Mosqueda, M.L. (2000). Caracterización de una nueva subestructura de la teca perinuclear del espermatozoide maduro no capacitado del cobayo. Tesis de doctorado. Centro de Investigación y Estudios Avanzados, Instituto Politécnico Nacional, México.Google Scholar
Karnovsky, M.L. & Dean, H.W. (1955). Aldehyde formation in the lipide droplets of the adrenal cortex during fixation, as demonstrated chemically and histochemically. J. Histochem. Cytochem. 3, 85102.CrossRefGoogle ScholarPubMed
Keates, R.A.B. (1980). Effects of glycerol on microtubule polymerization kinetics. Biochem. Biophys. Res. Commun. 97, 1163–9.CrossRefGoogle ScholarPubMed
Mann, T. & White, L.G. (1957). Glycerol metabolism by spermatozoa. Biochem. J. 65, 634–9.CrossRefGoogle ScholarPubMed
Marquez, B.J. & Ogasawara, F.X. (1977). Ultrastructural changes in turkey spermatozoa after immersion in glycerolysis media and during various steps of cryopreservation. Poultry Sci. 56, 1806–13.CrossRefGoogle Scholar
Martínez, C.O., Juárez-Mosqueda, M.L., Hernández-Espinosa, J. & Valencia, J. (2006). Cryopreservation of bull spermatozoa alters the perinuclear theca. Theriogenology 66, 1969–75.CrossRefGoogle ScholarPubMed
Maxwell-Evans, W.M.C, Evans, G., Rhodes, S.L., Hillard, M.A. & Bindon, B.M. (1993). Fertility of superovulated ewes after intrauterine or oviductal insemination with low number of fresh or frozen–thawed spermatozoa. Reprod. Fertil. Dev. 5, 5763.CrossRefGoogle Scholar
Mazur, P. (1970). Cryobiology: the freezing of biological system. Science 168, 939–49.CrossRefGoogle Scholar
Meyers, S. A. (2005). Spermatozoal response to osmotic stress. Anim. Reprod. Sci. 89, 5764.CrossRefGoogle ScholarPubMed
Mohri, H., Hasegawa, S. & Masaky, J. (1970). Seasonal changes in glycerol kinase activity of goat spermatozoa. Biol. Reprod. 2, 352–5.CrossRefGoogle ScholarPubMed
Mújica, A., Navarro-García, F.G., Hernández-González, E.O., & Juárez-Mosqueda, M.L. (2003). Perinuclear theca during spermatozoa maturation leading to fertilization. Microsc. Res. Tech. 61, 7687.CrossRefGoogle ScholarPubMed
Murdoch, R.N. & Jones, R.C. (1978). The effects of glycerol in the metabolism and ultrastructure of boar spermatozoa. J. Reprod. Fertil. 54, 419–22.CrossRefGoogle Scholar
Noiles, E.E., Bailey, J.L. & Storey, B.T. (1995). The temperature dependence in the hydraulic conductivity, L p, of the mouse sperm plasma membrane shows a discontinuity between 4 and 0°C. Cryobiology 32, 220–30.CrossRefGoogle Scholar
Orozco-Benítez, M. G., Lemus-Flores, C., Hernández Ballesteros, J.A., Navarrete- Méndez, R., & Juárez-Mosqueda, M.L. (2008). Alterations of domains in the plasmatic membrane due to damages of the perinuclear theca of pig preserved spermatozoa. Pak. J. Biol. Sci. 11, 1360–4.CrossRefGoogle ScholarPubMed
Osinowo, O. & Salamón, S. (1976). Examination of some processing methods for freezing boar semen. Aust. J. Biol. Sci. 29, 325–33.CrossRefGoogle ScholarPubMed
Parks, J.E. & Graham, J.K. (1992). Effects of cryopreservation procedures on spermatozoa membranes. Theriogenology 38, 209–22.CrossRefGoogle Scholar
Petrunkina, A.M., Radcke, S., Günzel-Apel, A.R., Harrison, R.A. & Töpfer-Petersen, E. (2004). Role of potassium channels, the sodium-potassium pump and the cytoskeleton in the control of dog sperm volume. Theriogenology 61, 3554.CrossRefGoogle ScholarPubMed
Polge, C., Smith, A.U. & Parkes, A.S. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164, 666.CrossRefGoogle ScholarPubMed
Polge, C, Salamon, S. & Wilmut, I. (1970). Fertilizing capacity of frozen boar semen following surgical insemination. Vet. Rec. 87, 424–8.CrossRefGoogle ScholarPubMed
Pursel, V.G. & Johnson, L.A. (1975). Freezing of boar spermatozoa: Fertilizing capacity with concentrated semen and a new thawing procedure. J. Anim. Sci. 40, 99102.CrossRefGoogle Scholar
Pursel, V.G., Schulman, L.L. & Johnson, L.A. (1978). Effect of glycerol concentration on frozen boar sperm. Theriogenology 9, 305–12.CrossRefGoogle Scholar
Riddle, V.M. & Lorenz, F.W. (1973). Nonenzymic formation of toxic levels of methylglyoxal from glycerol and dihydroxyacetone in Ringer's phosphate suspensions of avian spermatozoa. Biochem. Biophys. Res. Commun. 50, 2734.CrossRefGoogle ScholarPubMed
Si, W, Benson, J.D., Men, H. & Critser, J.K. (2006). Osmotic tolerance limits and effects of cryoprotectants on the motility, plasma membrane integrity and acrosomal integrity of rat sperm. Cryobiology 53, 336–48.CrossRefGoogle ScholarPubMed
Storey, B.T., Noiles, E.E. & Thompson, K.A. (1998). Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. Cryobiology 37, 4658.CrossRefGoogle ScholarPubMed
Sutoksky, P., Manandhar, G., Wu, A. & Oko, R. (2003). Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc. Res. Tech. 61, 362–78.CrossRefGoogle Scholar
Watson, P.F. (1995). Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev. 7, 871–91.CrossRefGoogle ScholarPubMed
Wilmut, I. & Polge, C. (1974). The fertilizing capacity of boar semen stored in the presence of glycerol at 20, 5 and –79°C. J. Reprod. Fertil. 38, 105–13.CrossRefGoogle Scholar