Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T12:38:37.242Z Has data issue: false hasContentIssue false

Expression pattern of STAT5A gene during early bovine embryogenesis

Published online by Cambridge University Press:  28 August 2013

Krzysztof Flisikowski*
Affiliation:
Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
Marc Boulhaeve
Affiliation:
Ludwig-Maximilians-Universität München, Hackerstrasse 27, 85764 Oberschleissheim, Germany.
Fabiola P. Lopes
Affiliation:
Ludwig-Maximilians-Universität München, Hackerstrasse 27, 85764 Oberschleissheim, Germany.
Eckhard Wolf
Affiliation:
Ludwig-Maximilians-Universität München, Hackerstrasse 27, 85764 Oberschleissheim, Germany.
Lech Zwierzchowski
Affiliation:
Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05–552 Magdalenka, Poland.
*
All correspondence to: Krzysztof Flisikowski. Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany. Tel. +49 8161 712036. Fax. +49 8161 712108. e-mail: [email protected]

Summary

Growth hormone (GH) plays an important role in early embryo development. It has been shown to activate multiple pathways, the most comprehensively studied being the STAT/JAK (Signal transducers and activators of transcription/Janus kinase) pathway. The objective of the present study was to investigate STAT5A gene expression during early bovine embryogenesis. Real-time polymerase chain reaction (RT-PCR) was used to measure the abundance of STAT5A transcripts. The mRNA was present at all stages of preimplantation bovine embryos investigated. The most abundant STAT5A expression occurred at the 2-cell stage. Expression was markedly reduced between the 4-cell and 8-cell stages, coinciding with the known time of embryo genome activation and loss of maternal mRNAs. This finding suggests that the embryonic STAT5A gene is primarily activated by maternal gene products.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boutinaud, M. & Jammes, H. (2004). Growth hormone increases Stat5 and Stat1 expression in lactating goat mammary gland: a specific effect compared to milking frequency. Domest. Anim. Endocrinol. 27, 363–78.CrossRefGoogle ScholarPubMed
Chomczynski, P. & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–9.CrossRefGoogle ScholarPubMed
Darnell, J.E. Jr., Kerr, I.M. & Stark, G.R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–21.Google Scholar
Diskin, M.G. & Morris, D.G. (2008). Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 43(Suppl 2), 260–7.CrossRefGoogle ScholarPubMed
Duncan, S.A., Zhong, Z., Wen, Z. & DarnellJ.E., Jr. J.E., Jr. (1997). STAT signaling is active during early mammalian development. Dev. Dyn. 208, 190–8.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Hansis, C. & Edwards, R.G. (2003). Cell differentiation in the preimplantation human embryo. Reprod. Biomed. Online 6, 215–20.Google Scholar
Joudrey, E.M., Lechniak, D., Petrik, J. & King, W.A. (2003). Expression of growth hormone and its transcription factor, Pit-1, in early bovine development. Mol. Reprod. Dev. 64, 275–83.Google Scholar
Khatib, H., Huang, W., Wang, X., Tran, A.H., Bindrim, A.B., Schutzkus, V., Monson, R.L. & Yandell, B.S. (2009a). Single gene and gene interaction effects on fertilization and embryonic survival rates in cattle. J. Dairy Sci. 92, 2238–47.CrossRefGoogle ScholarPubMed
Khatib, H., Maltecca, C., Monson, R.L., Schutzkus, V. & Rutledge, J.J. (2009b). Monoallelic maternal expression of STAT5A affects embryonic survival in cattle. BMC Genet. 10, 13.CrossRefGoogle ScholarPubMed
Kolle, S., Sinowatz, F., Boie, G., Lincoln, D., Palma, G., Stojkovic, M. & Wolf, E. (1998). Topography of growth hormone receptor expression in the bovine embryo. Histochem. Cell Biol. 109, 417–9.Google Scholar
Kolle, S., Stojkovic, M., Prelle, K., Waters, M., Wolf, E. & Sinowatz, F. (2001). Growth hormone (GH)/GH receptor expression and GH-mediated effects during early bovine embryogenesis. Biol. Reprod. 64, 1826–34.CrossRefGoogle ScholarPubMed
Kolle, S., Stojkovic, M., Boie, G., Wolf, E. & Sinowatz, F. (2002). Growth hormone inhibits apoptosis in in vitro produced bovine embryos. Mol. Reprod. Dev. 61, 180–6.CrossRefGoogle ScholarPubMed
Laporta, J., Driver, A. & Khatib, H. (2011). Short communication: expression and alternative splicing of POU1F1 pathway genes in preimplantation bovine embryos. J. Dairy Sci. 94, 4220–3.Google Scholar
Leidenfrost, S., Boelhauve, M., Reichenbach, M., Gungor, T., Reichenbach, H.D., Sinowatz, F., Wolf, E. & Habermann, F.A. (2011). Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model. PLoS One 6, e22121.Google Scholar
Levy, R.R., Cordonier, H., Czyba, J.C. & Guerin, J.F. (2001). Apoptosis in preimplantation mammalian embryo and genetics. Ital. J. Anat. Embryol. 106(2 Suppl 2), 101–8.Google ScholarPubMed
Madeja, Z.E., Warzych, E., Peippo, J., Lechniak, D. & Switonski, M. (2009). Gene expression and protein distribution of leptin and its receptor in bovine oocytes and preattachment embryos produced in vitro. Animal 3, 568–78.Google Scholar
Nakasato, M., Shirakura, Y., Ooga, M., Iwatsuki, M., Ito, M., Kageyama, S., Sakai, S., Nagata, M. & Aoki, F. (2006). Involvement of the STAT5 signaling pathway in the regulation of mouse preimplantation development. Biol. Reprod. 75, 508–17.Google Scholar
Pers-Kamczyc, E., Warzych, E., Peippo, J. & Lechniak, D. (2010). Growth hormone exerts no effect on the timing of the first zygotic cleavage in cattle. Theriogenology 74, 581–95.Google Scholar
Robert, C., McGraw, S., Massicotte, L., Pravetoni, M., Gandolfi, F. & Sirard, M.A. (2002). Quantification of housekeeping transcript levels during the development of bovine preimplantation embryos. Biol. Reprod. 67, 1465–72.Google Scholar
Teglund, S., McKay, C., Schuetz, E., van Deursen, J.M., Stravopodis, D., Wang, D., Brown, M., Bodner, S., Grosveld, G. & Ihle, J.N. (1998). Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–50.Google Scholar
Wakao, H., Gouilleux, F. & Groner, B. (1994). Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 13, 2182–91.Google Scholar
Wolf, E., Arnold, G.J., Bauersachs, S., Beier, H.M., Blum, H., Einspanier, R., Frohlich, T., Herrler, A., Hiendleder, S., Kolle, S., Prelle, K., Reichenbach, H.D., Stojkovic, M., Wenigerkind, H. & Sinowatz, F. (2003). Embryo-maternal communication in bovine - strategies for deciphering a complex cross-talk. Reprod. Domest. Anim. 38, 276–89.Google Scholar
WrightR.W., Jr. R.W., Jr. & Bondioli, K.R. (1981). Aspects of in vitro fertilization and embryo culture in domestic animals. J. Anim. Sci. 53, 702–29.Google Scholar