Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T15:29:58.676Z Has data issue: false hasContentIssue false

Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts

Published online by Cambridge University Press:  22 March 2010

S. Kim
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
J.H. Kim
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
E. Lee
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
Y.W. Jeong
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
M.S. Hossein
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
S.M. Park
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
S.W. Park
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
J.Y. Lee
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
Y.I. Jeong
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
H.S. Kim
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
Y.W. Kim
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
S.H. Hyun
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea. Laboratory of Veterinary Biotechnology, College of Veterinary Medicine, Chungbuk National University, 410 Sungbong-ro, Heungduk-gu, Chungbuk, 361–763, South Korea.
W.S. Hwang*
Affiliation:
SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea.
*
All correspondence to: W.S. Hwang, SooAm Biotech Research Foundation, 1024–39 Saam-ri, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–872, South Korea. Tel: +82 31 336 0500. Fax: +82 31 336 8439. e-mail: [email protected]

Summary

This study was aimed to establish embryonic stem (ES)-like cells from blastocysts derived from somatic cell nuclear transfer (SCNT) in pig. Somatic cells isolated from both day-30 fetus and neonatal cloned piglet were used for donor cells. A total of 60 blastocysts (46 and 14 derived from fetal and neonatal fibroblast donor cells, respectively) were seeded onto a mitotically inactive mouse embryonic fibroblast (MEF) monolayer and two ES-like cell lines, one from each donor cell type, were established. They remained undifferentiated over more than 52 (fetal fibroblast-derived) and 48 (neonatal fibroblast-derived) passages, while retaining alkaline phosphatase activity and reactivity with ES specific markers Oct-4, stage-specific embryonic antigen-1 (SSEA-1), SSEA-4, TRA-1–60 and TRA-1–81. These ES-like cells maintained normal diploid karyotype throughout subculture and successfully differentiated into embryoid bodies that expressed three germ layer-specific genes (ectoderm: β-III tubulin; endoderm: amylase; and mesoderm: enolase) after culture in leukemia inhibitory factor-free medium. Microsatellite analysis confirmed that they were genetically identical to its donor cells. Combined with gene targeting, our results may contribute to developing an efficient method for producing transgenic pigs for various purposes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, G.B., BonDurant, R.H., Goff, L., Groff, J. & Moyer, A.L. (1996). Development of bovine and porcine embryonic teratomas in athymic mice. Anim. Reprod. Sci. 45, 231–40.CrossRefGoogle ScholarPubMed
Byrne, J.A., Pedersen, D.A., Clepper, L.L., Nelson, M., Sanger, W.G., Gokhale, S., Wolf, D.P. & Mitalipov, S.M. (2007). Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450, 497502.CrossRefGoogle ScholarPubMed
Chen, L.R., Shiue, Y.L., Bertolini, L., Medrano, J.F., BonDurant, R.H. & Anderson, G.B. (1999). Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52, 195212.CrossRefGoogle ScholarPubMed
Cibelli, J.B., Stice, S.L., Golueke, P.J., Kane, J.J., Jerry, J., Blackwell, C., Ponce de León, F.A. & Robl, J.M. (1998). Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat. Biotechnol. 167, 642–6.CrossRefGoogle Scholar
Doetshman, T., Williams, P. & Maeda, N. (1988). Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev. Biol. 127, 224–7.CrossRefGoogle Scholar
Dyce, P.W., Zhu, H., Craig, J. & Li, J. (2004). Stem cells with multilineage potential derived from porcine skin. Biochem. Biophys. Res. Commun. 316, 651–8.CrossRefGoogle ScholarPubMed
Evans, M.J. & Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–6.CrossRefGoogle ScholarPubMed
Kim, S., Lee, G.S., Lee, S.H., Kim, H.S., Jeong, Y.W., Kim, J.H., Kang, S.K., Lee, B.C. & Hwang, W.S. (2005). Embryotropic effect of insulin-like growth factor (IGF)-I and its receptor on development of porcine preimplantation embryos produced by in vitro fertilization and somatic cell nuclear transfer. Mol. Reprod. Dev. 72, 8897.CrossRefGoogle ScholarPubMed
Lee, C.L. & Piedrahita, J.A. (2000). Effects of growth factors and feeder cells on porcine primordial germ cells in vitro. Cloning 2, 197205.CrossRefGoogle ScholarPubMed
Li, M., Zhang, D., Hou, Y., Jiao, L., Zheng, X. & Wang, W.H. (2003). Isolation and culture of embryonic stem cells from porcine blastocysts. Mol. Reprod. Dev. 65, 429–34.CrossRefGoogle ScholarPubMed
Li, M., Li, Y.H., Hou, Y., Sun, X.F., Sun, Q. & Wang, W.H. (2004). Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote 12, 43–8.CrossRefGoogle ScholarPubMed
Martin, G.R. (1981). Isolation of pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–8.CrossRefGoogle ScholarPubMed
Miyoshi, K., Taguchi, Y., Sendai, Y., Hoshi, H. & Sato, E. (2000). Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes. Biol. Reprod. 62, 1640–6.CrossRefGoogle ScholarPubMed
Moore, K. & Piedrahita, J.A. (1997). The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cell Dev. Biol. Anim. 33, 6271.CrossRefGoogle ScholarPubMed
Ouhibi, N., Sullivan, N.F., English, J., Colledge, W.H., Evans, M.J. & Clarke, N.J. (1995). Initial culture behaviour of rat blastocysts on selected feeder cell lines. Mol. Reprod. Dev. 40, 311–24.CrossRefGoogle ScholarPubMed
Rieske, P., Krynska, B. & Azizi, S.A. (2005). Human fibroblast-derived cell lines have characteristics of embryonic stem cells and cells of neuro-ectodermal origin. Differentiation 73, 474–83.CrossRefGoogle ScholarPubMed
Strelchenko, N. (1996). Bovine pluripotent stem cells. Theriogenology 45, 131–40.CrossRefGoogle Scholar
Strojek, R.M., Reed, M.A., Hoover, J.L. & Wagner, T.E. (1990). A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology 33, 901–13.CrossRefGoogle ScholarPubMed
Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris, C.P., Becker, R.A. & Hearn, J.P. (1995). Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92, 7844–8.CrossRefGoogle ScholarPubMed
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. & Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–47.CrossRefGoogle ScholarPubMed
Wakayama, T. & Yanagimachi, R. (2001). Mouse cloning with nucleus donor cells of different age and type. Mol. Reprod. Dev. 58, 376–83.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Wakayama, T., Tabar, V., Rodriguez, I., Perry, A.C., Studer, L. & Mombaerts, P. (2001). Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–3.CrossRefGoogle ScholarPubMed
Wang, L., Duan, E., Sung, L.Y., Jeong, B.S., Yang, X. & Tian, X.C. (2005). Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol. Reprod. 73, 149–55.CrossRefGoogle ScholarPubMed
Wianny, F., Perreau, C. & Hochereau de Reviers, M.T. (1997). Proliferation and differentiation of porcine inner cell mass and epiblast in vitro. Biol. Reprod. 57, 756–64.CrossRefGoogle ScholarPubMed
Yu, X., Jin, G., Yin, X., Cho, S., Jeon, J., Lee, S. & Kong, I. (2008). Isolation and characterization of embryonic stem-like cells derived from in vivo-produced cat blastocysts. Mol. Reprod. Dev. 75, 1426–32.CrossRefGoogle ScholarPubMed