Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T06:42:21.121Z Has data issue: false hasContentIssue false

Effects of ascorbic acid on in vitro culture of bovine preantral follicles

Published online by Cambridge University Press:  05 April 2012

Evelyn R. Andrade*
Affiliation:
Universidade Estadual de Londrina, Londrina, PR, Brazil.
Robert van den Hurk
Affiliation:
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
Lívia A. Lisboa
Affiliation:
Universidade Estadual de Londrina, Londrina, PR, Brazil.
Mariana F. Hertel
Affiliation:
Universidade Estadual de Londrina, Londrina, PR, Brazil.
Fabiana A. Melo-Sterza
Affiliation:
Universidade Estadual do Mato Grosso do Sul, Aquidauna, MS, Brazil.
Kleber Moreno
Affiliation:
Universidade Estadual de Londrina, Londrina, PR, Brazil.
Ana Paula F. R. L. Bracarense
Affiliation:
Universidade Estadual de Londrina, Londrina, PR, Brazil.
Fernanda C. Landim-Alvarenga
Affiliation:
Universidade Estadual de São Paulo, Botucatu, SP, Brazil.
Marcelo M. Seneda
Affiliation:
Universidade Estadual de Londrina, Londrina, PR, Brazil.
Amauri A. Alfieri
Affiliation:
Universidade Estadual de Londrina, Londrina, PR, Brazil.
*
All correspondence to Evelyn R. Andrade. Universidade Estadual de Londrina, Londrina, PR, Brazil. Tel: +55 4333015675. e-mail: [email protected]

Summary

The objective of this study was to evaluate the effects of adding ascorbic acid to the media for in vitro culture of cattle ovarian fragments and to determine their effects on growth activation and viability of early-stage follicles. The ovarian cortex was divided into small fragments; one fragment was immediately fixed (control) and the other fragments were cultured in minimum essential medium (MEM) supplemented or not with various doses of ascorbic acid. Ovarian tissue was processed for histology, transmission electron microscopy (TEM) and immunohistochemical demonstration of proliferating cell nuclear antigen (PCNA). Compared with control fragments, the percentage of primordial follicles was reduced (p < 0.05) and the percentage of growing follicles had increased (p < 0.05) in cultured cortical fragments, independent of the tested medium or incubation time. Furthermore, compared with control tissue, culture of ovarian cortex for 8 days reduced the percentages of healthy, viable follicles (p < 0.05), but not when cultures were supplemented with 25, 50 or 100 μg/ml of ascorbic acid. Ultrastructural and immunohistochemical analysis of 8 day cultured ovarian cortical fragments, however, showed the integrity and viability of follicles only when fragments were cultured in presence of 50 μg/ml of ascorbic acid. In conclusion, this study demonstrated that addition of ascorbic acid to MEM at a concentration of 50 μg/ml not only stimulates the activation of 8 day in vitro cultured cattle primordial follicles and subsequent growth of activated follicles, but also safeguards the viability of these early-stage follicles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, E.R., Seneda, M.M., Alfieri, A.A., de Oliveira, J.A, Bracarense, A.P.F.R.L., Figueiredo, J.R. & Toniolli, R. (2005). Interactions of indole acetic acid with EGF and FSH in the culture of ovine preantral follicles. Theriogenology 64, 1104–13.CrossRefGoogle ScholarPubMed
Andrade, E.R., Melo-Sterza, F.A., Seneda, M.M. & Alfieri, A.A. (2010). Consequências da produção das espécies reativas de oxigênio na reprodução e principais mecanismos antioxidantes. Rev. Bras. Reprod. Anim. 34, 7985.Google Scholar
Assey, R.J., Hyttel, P., Roche, J.F. & Boland, M.P. (1994). Infrequent structures in cattle oocytes. Anat. Embryol. 190, 263–71.CrossRefGoogle ScholarPubMed
Barja, G., Lopez-Torres, M., Perez-Campo, R., Rojas, C., Cadenas, S., Prat, J. & Pamplona, R. (1994). Dietary vitamin C decreases endogenous protein oxidative damage, malondialdehyde, and lipid peroxidation and maintains fatty acid unsaturation in the guinea pig liver. Free Radic. Biol. Med. 17, 105–15.CrossRefGoogle ScholarPubMed
Bolamba, D., Floyd, A.A., McGlone, J.J. & Lee, V.H. (2002). Epidermal growth factor enhances expression of connexin 43 protein in cultured porcine preantral follicles. Biol. Reprod. 67, 154160.CrossRefGoogle ScholarPubMed
Braw-Tal, R. & Yossefi, S. (1997). Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. J. Reprod. Fertil. 109, 165–71.CrossRefGoogle ScholarPubMed
Carr, A. & Frei, B. (1999). Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 13, 1007–24.CrossRefGoogle ScholarPubMed
Downey, K.M., Tan, C.K. & So, A.G. (1990). DNA polymerase delta: a second eucaryotic DNA replicase. Bioessays 12, 231–36.CrossRefGoogle Scholar
Duleba, A.J., Pehlivan, T., Carbone, R. & Spaczynski, R.Z. (2001). Activin stimulates proliferation of rat ovarian thecal-interstitial cells. Biol Reprod 65, 704709.CrossRefGoogle ScholarPubMed
Eppig, J.J. (2001). Oocyte control of ovarian follicular development and function in mammals. Reproduction 122, 829–38.CrossRefGoogle ScholarPubMed
Fortune, J.E., Kito, S. & Byrd, D.D. (1999). Activation of primordial follicles in vitro. J. Reprod. Fert. Suppl. 54, 439–48.Google ScholarPubMed
Fortune, J.E. (2003). The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim. Reprod. Sci. 78, 135–63.CrossRefGoogle ScholarPubMed
Fuku, E., Xia, L. & Downey, B.R. (1995). Ultrastructural changes in bovine oocytes cryopreserved by vitrification. Cryobiology 32, 139–56.CrossRefGoogle ScholarPubMed
Gao, M.Z., Wang, Y. & WU, X. (2007). In vitro maturation of immature oocytes from preantral follicles in prepuberal mice. J. Reprod. Contracept. 18, 2532.CrossRefGoogle Scholar
Gougeon, A. (1996). Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr. Rev. 17, 121–54.CrossRefGoogle ScholarPubMed
Gougeon, A. & Busso, D. (2000). Morphologic and functional determinants of primordial and primary follicles in the monkey ovary. Mol. Cell. Endocrinol. 163, 3341.CrossRefGoogle ScholarPubMed
Guérin, P., El Mouatassim, S. & Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–89.CrossRefGoogle ScholarPubMed
Hay, M.F., Cran, D.G. & Moor, R.M. (1976). Structural changes occuring during atresia in sheep ovarian follicles. Cell Tissue Res. 169, 515–29.CrossRefGoogle ScholarPubMed
Kimura, H., Yamada, Y., Morita, Y., Ikeda, H. & Matsuo, T. (1992). Dietary ascorbic acid depresses plasma and low density lipoprotein lipid peroxidation in genetically scorbutic rats. J. Nutr. 122, 1904–9.CrossRefGoogle ScholarPubMed
Li, Y. & Schellhorn, H.E. (2007). New developments and novel therapeutic perspectives for vitamin C. J. Nutr. 137, 2171–84.CrossRefGoogle ScholarPubMed
Lintern-Moore, S. & Moore, G.P.M. (1979). The initiation of follicle and oocyte growth in the mouse ovary. Biol. Reprod. 20, 773–78.CrossRefGoogle ScholarPubMed
Lutsenko, E.A., Carcamo, J.M. & Golde, D.W. (2002). Vitamin C prevents DNA mutation induced by oxidative stress. J. Biol. Chem. 277, 16895–9.CrossRefGoogle ScholarPubMed
Luvoni, G.C., Keskintepe, L. & Brackett, B.G. (1996). Improvement in bovine embryo production in vitro by glutathione-containing culture media. Mol. Reprod. Dev. 43, 437–43.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Martins, F.S., Celestino, J.J.H., Saraiva, M.V.A., Chaves, R.N., Rossetto, R., Silva, C.M.G., Lima-Verde, I.B., Lopes, C.A.P., Campello, C.C. & Figueiredo, J.R. (2010). Interaction between growth differentiation factor 9, insulin-like growth factor I and growth hormone on the in vitro development and survival of goat preantral follicles. Braz. J. Med. Biol. Res. 43, 728736.CrossRefGoogle ScholarPubMed
Matos, M.H.T., Bruno, J.B., Rocha, R.M.P., Lima-Verde, I.B., Santos, K.D.B., Saraiva, M.V.A., Silva, J.R.V., Martins, F.S., Chaves, R.N., Báo, S.N. & Figueiredo, J.R. (2011). In vitro development of primordial follicles after long-term culture of goat ovarian tissue. Res. Vet. Sci. 90, 404–11.CrossRefGoogle ScholarPubMed
McGee, E.A. & Hsueh, A.A. (2000). Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 21, 200–14.Google ScholarPubMed
McNatty, K.P., Fidler, A.E., Juengel, J.L., Quirke, L.D., Smith, P.R., Heath, D.A., Lundy, T., O'Connell, A. & Tisdall, D.J. (2000). Growth and paracrine factors regulating follicular formation and cellular function. Mol. Cell. Endocrinol. 163, 1120.CrossRefGoogle ScholarPubMed
McNatty, K.P., Smith, P., Hudson, N.L., Heath, D.A., Tisdall, D.J. & Braw-Tal, R. (1995). Development of the sheep ovary during fetal and early neonatal life and the effect of fecundity genes. J. Reprod. Fert. Suppl. 49, 123–35.Google ScholarPubMed
Meredith, S., Dudenhoeffer, G. & Jackson, K. (2000). Classification of small type B/C follicles as primordial follicles in mature rats. J. Reprod. Fertil. 119, 43–8.CrossRefGoogle ScholarPubMed
Murray, A.A., Molinek, M.D., Baker, S.J., Kojima, F.N., Smith, M.F., Hillier, S.G. & Spears, N. (2001). Role of ascorbic acid in promoting follicle integrity and survival in intact mouse ovarian follicles in vitro. Reproduction 121, 8996.CrossRefGoogle ScholarPubMed
Oktay, K., Schenken, R.S. & Nelson, J.F. (1995). Proliferating cell nuclear antigen marks the initiation of follicular growth in the rat. Biol. Reprod. 53, 295301.CrossRefGoogle ScholarPubMed
Oktay, K., Karlikaya, G., Akman, O., Ojakian, G.K. & Oktay, M. (2000). Interaction of extracellular matrix and Activin A in the initiation of follicle growth in the mouse ovary. Biol. Reprod. 63, 457–61.CrossRefGoogle ScholarPubMed
Olson, S.E. & Seidel, G.E. Jr (2000). Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol. Reprod. 62, 248–52.CrossRefGoogle ScholarPubMed
Picton, H.M. (2001). Activation of follicle development: the primordial follicle. Theriogenology 55, 1193–210.CrossRefGoogle ScholarPubMed
Picton, H.M., Danfour, M., Harris, S.E., Chambers, E & Huntriss, J. (2003). In vitro growth and maturation of oocyte. Reproduction 61, 445–62.Google Scholar
Picton, H.M, Harris, S.E., Muruvi, W. & Chambers, E.L. (2008). The in vitro growth and maturation of follicles. Reproduction 136, 703–15.CrossRefGoogle ScholarPubMed
Rossetto, R., Lima-Verde, I.B., Matos, M.H.T., Saraiva, M.V.A., Martins, F.S., Faustino, L.R., Araújo, V.R., Silva, C.M.G., Báo, S.N., Campello, C.C., Figueiredo, J.R. & Blume, H. (2009). Interaction between ascorbic acid and follicle-stimulating hormone maintains follicular viability after long-term in vitro culture of caprine preantral follicles. Domest. Anim. Endocrinol. 37, 112–23.CrossRefGoogle ScholarPubMed
Salehnia, M., Moghadam, E.A. & Velojerdi, M.R. (2002). Ultrastructure of follicles after vitrification of mouse ovarian tissue. Fertil. Steril. 78, 644–45.CrossRefGoogle ScholarPubMed
Shimizu, T., Murayama, C., Sudo, N., Kawashima, C., Tetsuka, M. & Miyamoto, A. (2008). Involvement of insulin and growth hormone (GH) during follicular development in the bovine ovary. Anim. Reprod. Sci. 106, 143–52.CrossRefGoogle ScholarPubMed
Silva, J.R.V., Lucci, C.M., Carvalho, F.C.A., Báo, S.N., Costa, S.H.F., Santos, R.R. & Figueiredo, J.R. (2000). Effect of coconut water and Braun-Collins solutions at different temperatures and incubation times on the morphology of goat preantral follicles preserved in situ. Theriogenology 54, 809–22.CrossRefGoogle Scholar
Silva, J.R.V., van den Hurk, R., Costa, S.H.F., Andrade, E.R., Nunes, A.P.A., Ferreira, F.V.A., Lôbo, R.N.B. & Figueiredo, J.R. (2004). Survival and growth of goat primordial follicles after in vitro culture of ovarian cortical slices in media containing coconut water. Anim. Reprod. Sci. 81, 273–86.CrossRefGoogle ScholarPubMed
Smitz, J., Dolmans, M.M., Donnez, J., Fortune, J.E., Hovatta, O., Jewgenow, K., Picton, H.M., Plancha, C., Shea, L.D., Stouffer, R.L., Telfer, E.E., Woodruff, T.K. & Zelinski, M.B. (2010). Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum. Reprod. Update 16, 395414.CrossRefGoogle ScholarPubMed
Sweetman, S.F., Strain, J.J. & McKelvey-Martin, V.J. (1997). Effect of antioxidant vitamin supplementation on DNA damage and repair in human lymphoblastoid cells. Nutr. Cancer 27, 122–30.CrossRefGoogle ScholarPubMed
Tassel, R. & Kennedy, J.P. (1980). Early follicular development and atretic changes in the ovary of the lamb – fine structure and histochemistry. Aust. J. Biol. Sci. 33, 675–87.CrossRefGoogle Scholar
Telfer, E.E. (1998). In vitro Models for Oocyte Development. Theriogenology 49, 451–60.CrossRefGoogle ScholarPubMed
Telfer, E.E., McLaughlin, M., Ding, C. & Thong, K.J. (2008). A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum. Reprod. 23, 1151–58.CrossRefGoogle ScholarPubMed
Thomas, F.H., Leask, R., Srsen, V., Riley, S.C., Spears, N. & Telfer, E.E. (2001). Effect of ascorbic acid on health and morphology of bovine preantral follicles during long-term culture. Reproduction 122, 487–95.CrossRefGoogle ScholarPubMed
van den Hurk, R., Spek, E.R., Hage, W.J., Fair, T., Ralph, J.H. & Schotanus, K. (1998). Ultrastructure and viability of isolated bovine preantral follicles. Hum. Reprod. 4, 833–41.Google ScholarPubMed
van den Hurk, R., Abir, R., Telfer, E.E. & Bevers, M.M. (2000). Primate and bovine immature oocytes and follicles as sources of fertilizable oocytes. Hum. Reprod. Update 6, 457–74.CrossRefGoogle ScholarPubMed
van den Hurk, R. & Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63, 1717–51.CrossRefGoogle ScholarPubMed
van den Hurk, R. & Santos, R.R. (2009). Development of fresh and cryopreserved early-stage ovarian follicles, with special attention to ruminants. Anim. Reprod. 6, 7295.Google Scholar
Wandji, S.A., Eppig, J.J. & Fortune, J.E. (1996). FSH and growth factors affect the growth and endocrine function in vitro of granulosa cells of bovine preantral follicles. Theriogenology 45, 817–32.CrossRefGoogle ScholarPubMed
Zhao, J., Dorland, M., Taverne, M.A., van der Weijden, G.C., Bevers, M.M. & van den Hurk, R. (2000). In vitro culture of rat pre-antral follicles with emphasis on follicular interactions. Mol. Reprod. Dev. 55, 6574.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Zhao, J., Tavene, M.A.M., van der Weijden, G.C., Bevers, M.M. & van den Hurk, R. (2001). Insulin-like growth factor-I (IGF-I) stimulates the development of cultured rat pre-antral follicles. Mol. Reprod. Dev. 58, 287–96.3.0.CO;2-G>CrossRefGoogle ScholarPubMed