Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-19T15:29:42.490Z Has data issue: false hasContentIssue false

Effect of temperature on the embryonic and larvae development of discus fish Symphysodon aequifasciatus and time of first feeding

Published online by Cambridge University Press:  18 September 2024

Douglas da Cruz Mattos
Affiliation:
Federal Institute of Education, Science and Technology Espírito Santo, Piúma, Brazil
Leonardo Demier Cardoso
Affiliation:
Federal University of Juiz de Fora, Minas Gerais, Brazil
Adriano Teixeira de Oliveira*
Affiliation:
Federal Institute of Education, Science and Technology Amazonas, Manaus, Brazil
Rafaela Screnci-Ribeiro
Affiliation:
North Fluminense State University Darcy Ribeiro, Animal Science and Nutrition Laboratory, Rio de Janeiro, Brazil
Bruno Olivetti de Mattos
Affiliation:
Federal University of Recôncavo da Bahia, Center for Agricultural, Environmental and Biological Sciences, Cruz das Almas, Brazil
Paulo Henrique Rocha Aride
Affiliation:
Federal Institute of Education, Science and Technology Amazonas, Manaus, Brazil
Marcella Costa Radael
Affiliation:
Federal University of Western Pará, Monte Alegre, Brazil
Jonas Henrique de Souza Motta
Affiliation:
Federal Institute of Education, Science and Technology Espírito Santo, Piúma, Brazil
Manuel Vazquez Vidal
Affiliation:
North Fluminense State University Darcy Ribeiro, Animal Science and Nutrition Laboratory, Rio de Janeiro, Brazil
*
Corresponding author: Adriano Teixeira de Oliveira; Email: [email protected]

Summary

This study aimed to analyze the influence of different temperatures on the embryonic and larval development of discus fish Symphysodon aequifasciatus and determine the time required for the beginning of exogenous feeding. Eggs and larvae were obtained from natural spawns and distributed in five treatments: 24.0, 26.0, 28.0, 30.0, and 32.0 °C. To assess the developmental stages and embryonic structures, samples were taken at regular intervals and checked under an optical microscope. At the end of the experimental period, statistical analysis was performed, followed by Tukey’s test. As a result, it was possible to observe the significant effects of temperature on the variables. It was noted that the temperature accelerated the embryonic and larval development of the discus and also contributed to a reduction in the time between the incubation period and the feeding transition. It was also noted that the incubation of eggs and larvae at a temperature of 24.0 °C can cause damage to embryos, such as malformation of the body as well as anomalies in the circulatory system.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, P.C., Netto, M.B. and Montenegro, M.R. (2010) Perturbações circulatórias. In Franco, M.B., Bacchi, C. and Almeida, P.C. (Org.), Patologia Processos Gerais. 5ª ed. São Paulo: Atheneu, pp. 125134.Google Scholar
Aride, P.H.R., Gomes, M.F., Azevedo, D.G., Sangali, G.R., Silva, A.C., Lavander, H.D., Souza, A.B., Polese, M.F., Mattos, D.C., Bassul, L.A., Cardoso, L.D., Oliveira, A.T. and Faggio, C. (2021) Dusky grouper Epinephelus marginatus growth and survival when exposed to different photoperiods. Fishes 6, 31.CrossRefGoogle Scholar
Boltaña, S., Sanhueza, N., Aguilar, A., Gallardo-Escarate, C., Arriagada, G., Valdes, J.A., Soto, D. and Quiñones, R.A. (2017) Influences of thermal environment on fish growth. Ecology and Evolution 7, 68146825.CrossRefGoogle ScholarPubMed
Burggren, W.W. and Bagatto, B. (2008) Cardiovascular anatomy and physiology. In Finn, R.N. and Kapoor, B.G. (eds.), Fish Larval Physiology. Enfield, NH: Science Publishers, pp. 119162.Google Scholar
Burton, T., Killen, S.S., Armstrong, J.D.and Metcalfe, N.B. (2011) What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proceedings of the Royal Society B: Biological Sciences 278, 34653473.CrossRefGoogle ScholarPubMed
Dionísio, G., Campos, C., Valente, L.M.P., Conceição, L.E.C., Cancela, M.L. and Gavaia, P.J. (2012) Effect of egg incubation temperature on the occurrence of skeletal deformities in Solea senegalensis . Journal of Applied Ichthyology 28, 471476.CrossRefGoogle Scholar
Elliott, J.M. and Elliott, J.A. (2010) Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. Journal of Fish Biology 77, 17931817.CrossRefGoogle ScholarPubMed
Ferreira, A.V., Vidal Junior, M.V., Andrade, D.R., Yasui, G.S., Mendonça, P.P. and Mattos, D.C. (2009) Consumo de vitelo durante o desenvolvimento embrionário de Melanotênia-maçã, Glossolepis incisus, Weber 1907 (Melanotaeniidae). Ciência Animal Brasileira 10, 721729.Google Scholar
Finn, R.N. and Kapoor, B.G. (2008) Fish Larval Physiology. Enfield, NH: Science Pu.Google Scholar
Fishbase (2016) Symphysodon aequifasciatus Pellegrin, 1904. http://www.fishbase.se/summary/11185 (accessed 18 May 2024).Google Scholar
Gisbert, E. and Williot, P. (1997) Larval behavior and effect of the timing of initial feeding on growth and survival of Siberian sturgeon (Acipenser baerii) larvae under small scale hatchery production. Aquaculture 156, 6376.CrossRefGoogle Scholar
Johnston, I.A., Lee, H.T., Macqueen, D.J., Paranthaman, K., Kawashima, C., Anwar, A., Kinghorn, J.R. and Damay, T. (2009) Embryonic temperature affects muscle fiber recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. The Journal of Experimental Biology 212, 17811793.CrossRefGoogle ScholarPubMed
Johnston, I.A. (2006) Environment and plasticity of myogenesis in teleost fish. The Journal of Experimental Biology 209, 22492264.CrossRefGoogle ScholarPubMed
Kamler, E. (1992) Early Life History of Fish: An Energetic Approach. Londres: Chapman & Hall.CrossRefGoogle Scholar
Ladislau, D., Ribeiro, M.W.S., Castro, P.D.S., Pantoja-Lima, J., Aride, P.H.R. and Oliveira, A.T. (2021) Ichthyological ethnoknowledge of the ‘piabeiros’ from Amazon region, Brazil. Journal of Ethnobiology and Ethnomedicine 17, 114. https://doi.org/10.1186/s13002-021-00468-7.Google Scholar
Lopes, I.G., Araújo-Dairiki, T.B., Kojima, J.T., Val, A.L. and Portella, M.C. (2018) Predicted 2100 climate scenarios affect the growth and skeletal development of tambaqui (Colossoma macropomum) larvae. Ecology and Evolution 8, 1003910048. https://doi.org/10.1002/ece3.4429.CrossRefGoogle ScholarPubMed
Mattos, D.C., Manhaes, J.V.A., Cardoso, L.D., Aride, P.H.R., Oliveira, A.T., Radael, M.C., Azevedo, R.V. and Junior, M.V.V. (2022) Influence of garlic extract on larval performance and survival of juvenile angelfish Pterophyllum scalare during transport. Brazilian Journal of Biology 83, 17. https://doi.org/10.1590/1519-6984.244480.Google Scholar
Mattos, D.C., Cardoso, L.D., Fosse, P.J., Radael, M.C., Fosse Filho, J.C., Manhães, J.V.A., Andrade, D.R. and Vidal, M.V. (2014) Description of the ontogenic and larval period of discus fish (Symphysodon aequifasciatus). Zygote 23, 460466.CrossRefGoogle ScholarPubMed
Mattos, D.C., Screnci-Ribeiro, R., Cardoso, L.D. and Vidal Junior, M.V. (2016) Description of the reproductive behavior of Symphysodon aequifasciatus (Cichlidae) in captivity. Acta Amazonica 46, 433438.CrossRefGoogle Scholar
Mattos, D.C., Screnci-Ribeiro, R., Cardoso, L.D. and Vidal Junior, M.V. (2017) Couple formation and spawning between two female Discus Fish (Symphysodon aequifasciatus – Cichlidae) in captivity. Acta Amazônica 47, 167170.CrossRefGoogle Scholar
Musso, C. and Pereira, F.E.L. (2013) Alterações da Circulação. In Filho, G.B. (Org.), Bogliolo Patologia Geral. 5ª ed. Vila Mariana, SP: Editora Guanabara Koogan Ltda, pp. 197232.Google Scholar
Okamoto, M.H. (2004) Efeito da temperatura sobre ovos e larvas de linguado (Paralychythys orbignianus). Dissertação. Universidade Federal do Rio Grande, 27p.Google Scholar
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M.T., Baker, M., et al. (2020) The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410.CrossRefGoogle ScholarPubMed
Pereira, S., De Andrade, D., Radael, M., Fosse Filho, J., De Azevedo, R., Mattos, D. and Vidal Junior, M. (2016) Effect of temperature during embryonic development and first feeding of Trichogaster leeri larvae. Zygote 24, 733741.CrossRefGoogle ScholarPubMed
Perrichon, P., Pasparakis, C., Mager, E.M., Stieglitz, J.D., Benetti, D.D., Grosell, M. and Burggren, W.W. (2017) Morphology and cardiac physiology are differentially affected by temperature in developing larvae of the marine fish mahi-mahi (Coryphaena hippurus). The Company of Biologists 6, 800809. https://doi.org/10.1242/bio.025692.Google ScholarPubMed
Portella, M.C. and Dabrowski, K. (2008) Diets, physiology, biochemistry, and digestive tract development of freshwater fish larvae. In Cyrino, J.E.P., Bureau, D. and Kapoor, B.G. (eds.), Feeding and Digestive Functions in Fishes. New Hampshire: CRC Press, pp. 227279.CrossRefGoogle Scholar
Radael, M.C., Cardoso, L.D., Andrade, D.R., Ferreira, A.V., Mattos, D.C., Motta, J.H.S. and Vidal, M.V. (2015) Effect of temperature on embryonic development of Melanotaenia boesemani (Allen and Cross, 1982). Zygote 10, 19.Google Scholar
Ribeiro, M.W.S., Oliveira, A.T. and Carvalho, T.B. (2021) Water temperature modulates social behaviour of ornamental cichlid (Pterophyllum scalare) in an artificial system. Journal of Applied Aquaculture 33, 113. https://doi.org/10.1080/10454438.2021.1973936.Google Scholar
Rijnsdorp, A.D., Peck, M.A., Engelhard, G.H., Mollmann, C. and Pinnegar, J.K. (2009) Resolving the effect of climate change on fish populations. ICES Journal of Marine Science 15701583.CrossRefGoogle Scholar
Sadati, M.A.Y., Shakuriam, M., Hasani, M.H., Pourali, H.R., Pourashadi, M. and Yousefi, A. (2011) Effects of daily temperature fluctuations on growth and hematology of juvenile Acipenser baerii . Journal of Applied Ichthyology 27, 591594.CrossRefGoogle Scholar
Shan, X., Quan, H. and Dou, S. (2008) Effects of delayed first feeding on growth and survival of rock bream Oplegnathus fasciatus larvae. Aquaculture 277, 1423.CrossRefGoogle Scholar
Tyus, H.M. (2011) Ecology and Conservation of Fishes. Boca Raton, FL: CRC Press (Taylor & Francis Group).CrossRefGoogle Scholar
Val, A.L. and De Almeida-Val, M.N.F. (1995) Fishes of the Amazon and their Environment: Physiological and Biochemical Aspect. Berlin: Springer Verlag. 224 p.CrossRefGoogle Scholar
Wattley, J. (1991) Discus for the Perfectionist. Neptune: T.F.H Publications, 128 p.Google Scholar
Werner, P.R. (2015) Patologia geral veterinária aplicada . São Paulo: Roca, 525 p.Google Scholar