Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T14:40:09.311Z Has data issue: false hasContentIssue false

Effect of maturation on the expression of aquaporin 3 in mouse oocyte

Published online by Cambridge University Press:  28 May 2010

Jun Woo Jo
Affiliation:
Seoul National University Bundang Hospital, Seongnam, Gyeonggi 463–707, Korea.
Byung Chul Jee
Affiliation:
Seoul National University Bundang Hospital, Seongnam, Gyeonggi 463–707, Korea. Seoul National University College of Medicine, Seoul 110–744, Korea.
Chang Suk Suh*
Affiliation:
Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 300 Gumi, Bundang, Seongnam, Gyeonggi, 463–707, Korea. Seoul National University College of Medicine, Seoul 110–744, Korea. Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 110–744, Korea.
Seok Hyun Kim
Affiliation:
Seoul National University College of Medicine, Seoul 110–744, Korea. Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 110–744, Korea.
Young Min Choi
Affiliation:
Seoul National University College of Medicine, Seoul 110–744, Korea. Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 110–744, Korea.
Jung Gu Kim
Affiliation:
Seoul National University College of Medicine, Seoul 110–744, Korea. Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 110–744, Korea.
Shin Yong Moon
Affiliation:
Seoul National University College of Medicine, Seoul 110–744, Korea. Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 110–744, Korea.
*
All correspondence to: Chang Suk Suh. Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 300 Gumi, Bundang, Seongnam, Gyeonggi, 463–707, Korea. Tel: +82 31 787 7251. Fax: + 82 31 787 4054. e-mail: [email protected]

Summary

This study aimed to investigate whether aquaporin 3 (Aqp3) mRNAs are expressed in immature oocytes and altered during in vitro maturation process. Five- to 6-week-old female ICR mice were primed by gonadotropin for 24 and 48 h. Immature oocytes obtained 48 h after priming were also matured in vitro for 17 to 18 h. In vivo matured oocytes were obtained after 48 h priming followed by hCG injection. Total RNAs were extracted from 80 to 150 oocytes in each experimental group, and the levels of Aqp3 mRNA were quantified by real-time reverse transcriptase polymerase chain reaction. The experiments were repeated twice using different oocytes. The Aqp3 mRNA was expressed in immature oocytes, as well as in in vitro and in vivo matured oocytes. The expression level was higher in immature oocytes obtained 48 h after priming (17.2 ± 8.6, mean ± SD) than those with no priming (5.7 ± 0.8) or obtained 24 h after priming (2.5 ± 0.8). The expression of Aqp3 mRNA decreased after in vitro maturation (1.2 ± 0.5), which was similar to in vivo matured oocytes (1.0 ± 0.0). Our work demonstrated that Aqp3 mRNA expression increased during the development of immature oocyte but decreased after completion of in vitro maturation. The results indicate that AQP3 is certainly needed for the acquisition of immature oocytes’ full growing potential within antral follicles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agre, P. & Kozono, D. (2003). Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett. 555, 72–8.CrossRefGoogle ScholarPubMed
Agre, P., King, L.S., Yasui, M., Guggino, W.B., Ottersen, O.P., Fujiyoshi, Y., Engel, A. & Nielsen, S. (2002). Aquaporin water channels – from atomic structure to clinical medicine. J. Physiol. 542, 316.CrossRefGoogle ScholarPubMed
Beitz, E., Kumagami, H., Krippeit-Drews, P., Ruppersberg, J.P. & Schultz, J.E. (1999). Expression pattern of aquaporin water channels in the inner ear of the rat. The molecular basis for a water regulation system in the endolymphatic sac. Hear. Res. 132, 7684.CrossRefGoogle ScholarPubMed
Bellemère, G., Von Stetten, O. & Oddos, T. (2008). Retinoic acid increases aquaporin 3 expressions in normal human skin. J. Invest. Dermatol. 128, 542–8.CrossRefGoogle ScholarPubMed
Damiano, A., Zotta, E., Goldstein, J., Reisin, I. & Ibarra, C. (2001). Water channel proteins AQP3 and AQP9 are present in syncytiotrophoblast of human term placenta. Placenta 22, 776–81.CrossRefGoogle ScholarPubMed
Edashige, K., Sakamoto, M. & Kasai, M. (2000). Expression of mRNAs of the aquaporin family in mouse oocytes and embryos. Cryobiology 40, 171–5.CrossRefGoogle ScholarPubMed
Edashige, K., Ohta, S., Tanaka, M., Kuwano, T., Valdez, D.M. Jr., Hara, T., Jin, B., Takahashi, S., Seki, S., Koshimoto, C. & Kasai, M. (2007). The role of aquaporin 3 in the movement of water and cryoprotectants in mouse morulae. Biol. Reprod. 77, 365–75.CrossRefGoogle ScholarPubMed
Ford, P., Merot, J., Jawerbaum, A., Gimeno, M.A., Capurro, C. & Parisi, M. (2000). Water permeability in rat oocytes at different maturity stages: aquaporin-9 expression. J. Membr. Biol. 176, 151–8.CrossRefGoogle ScholarPubMed
Frigeri, A., Nicchia, G.P., Verbavatz, J.M., Valenti, G. & Svelto, M. (1998). Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle. J. Clin. Invest. 102, 695703.CrossRefGoogle ScholarPubMed
Hara, M., Ma, T. & Verkman, A.S. (2002). Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired hydration, elasticity, and barrier recovery. J. Biol. Chem. 277, 46616–21.CrossRefGoogle ScholarPubMed
Higuchi, S., Kubota, M., Iguchi, K., Usui, S., Kiho, T. & Hirano, K. (2007). Transcriptional regulation of aquaporin 3 by insulin. J. Cell Biochem. 102, 1051–8.CrossRefGoogle ScholarPubMed
Huang, H.F., He, R.H., Sun, C.C., Zhang, Y., Meng, Q.X. & Ma, Y.Y. (2006). Function of aquaporins in female and male reproductive systems. Hum. Reprod. Update 12, 785–95.CrossRefGoogle ScholarPubMed
Ishibashi, K., Sasaki, S., Fushimi, K., Uchida, S., Kuwahara, M., Saito, H., Furukawa, T., Nakajima, K., Yamaguchi, Y., Gojobori, T. & Marumo, F. (1994). Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc. Natl. Acad. Sci. USA 91, 6269–73.CrossRefGoogle ScholarPubMed
Ishibashi, K., Kuwahara, M., Kageyama, Y., Tohsaka, A., Marumo, F. & Sasaki, S. (1997). Cloning and functional expression of a second new aquaporin abundantly expressed in testis. Biochem. Biophys. Res. Commun. 237, 714–8.CrossRefGoogle ScholarPubMed
Jablonski, E.M., McConnell, N.A., Hughes, F.M. Jr. & Huet-Hudson, Y.M. (2003). Estrogen regulation of aquaporins in the mouse uterus: potential roles in uterine water movement. Biol. Reprod. 69, 1481–7.CrossRefGoogle ScholarPubMed
Jablonski, E.M., Webb, A.N., McConnell, N.A., Riley, M.C. & Hughes, F.M. Jr. (2004). Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease. Am. J. Physiol. Cell Physiol. 286, C97585.CrossRefGoogle ScholarPubMed
Li, X., Yu, H. & Koide, S.S. (1994). The water channel gene in human uterus. Biochem. Mol. Biol. Int. 32, 371–7.Google ScholarPubMed
Ma, T., Song, Y., Yang, B., Gillespie, A., Carlson, E.J., Epstein, C.J. & Verkman, A.S. (2000). Nephrogenic diabetic insipidus in mice lacking aquaporin-3 water channels. Proc. Natl. Acad. Sci. USA 97, 4386–91.CrossRefGoogle ScholarPubMed
Mann, S.E., Ricke, E.A., Yang, B.A., Verkman, A.S. & Taylor, R.N. (2002). Expression and localization of aquaporin 1 and 3 in human fetal membranes. Am. J. Obstet. Gynecol. 187, 902–7.CrossRefGoogle ScholarPubMed
McConnell, N.A., Yunus, R.S., Gross, S.A., Bost, K.L., Clemens, M.G. & Hughes, F.M. Jr. (2002). Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology 143, 2905–12.CrossRefGoogle ScholarPubMed
Meng, Q.X., Gao, H.J., Xu, C.M., Dong, M.Y., Sheng, X., Sheng, J.Z. & Huang, H.F. (2008). Reduced expression and function of aquaporin-3 in mouse metaphase-II oocytes induced by controlled ovarian hyperstimulation were associated with subsequent low fertilization rate. Cell. Physiol. Biochem. 21, 123–8.CrossRefGoogle ScholarPubMed
Okahira, M., Kubota, M., Iguchi, K., Usui, S. & Hirano, K. (2008). Regulation of aquaporin 3 expression by magnesium ion. Eur. J. Pharmacol. 588, 2632.CrossRefGoogle ScholarPubMed
Page, E., Winterfield, J., Goings, G., Bastawrous, A. & Upshaw-Earley, J. (1998). Water channel proteins in rat cardiac myocyte caveolae: osmolarity dependent reversible internalization. Am. J. Physiol. 274, H19882000.Google ScholarPubMed
Preston, G.M., Jung, J.S., Guggino, W.B. & Agre, P. (1993). The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J. Biol. Chem. 268, 1720.CrossRefGoogle ScholarPubMed
Richard, C., Gao, J., Brown, N. & Reese, J. (2003). Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 144, 1533–41.CrossRefGoogle ScholarPubMed
Schefe, J.H., Lehmann, K.E., Buschmann, I.R., Unger, T. & Funke-Kaiser, H. (2006). Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression's CT difference” formula. J. Mol. Med. 84, 901–10.CrossRefGoogle ScholarPubMed
Shanahan, C.M., Connolly, D.L., Tyson, K.L., Cary, N.R., Osbourn, J.K., Agre, P. & Weissberg, P.L. (1999). Aquaporin-1 is expressed by vascular smooth muscle cells and mediates rapid water transport across vascular cell membranes. J. Vasc. Res. 36, 353–62.CrossRefGoogle ScholarPubMed
Sun, X.L., Zhang, J., Fan, Y., Ding, J.H., Sha, J.H. & Hu, G. (2009). Aquaporin-4 deficiency induces subfertility in female mice. Fertil. Steril. 92, 1736–43.CrossRefGoogle ScholarPubMed
Verkman, A.S., van Hoek, A.N., Ma, T., Frigeri, A., Skach, W.R., Mitra, A., Tamarappoo, B.K. & Farinas, J. (1996). Water transport across mammalian cell membranes. Am. J. Physiol. 270, 1230.CrossRefGoogle ScholarPubMed
Zelenina, M., Bondar, A.A., Zelenin, S. & Aperia, A. (2003). Nickel and extracellular acidification inhibit the water permeability of human aquaporin-3 in lung epithelial cells. J. Biol. Chem. 278, 30037–43.CrossRefGoogle ScholarPubMed
Zelenina, M., Tritto, S., Bondar, A.A., Zelenin, S. & Aperia, A. (2004). Copper inhibits the water and glycerol permeability of aquaporin-3. J. Biol. Chem. 279, 51939–43.CrossRefGoogle ScholarPubMed