Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-18T04:55:34.704Z Has data issue: false hasContentIssue false

The effect of dual inhibition of Ras–MEK–ERK and GSK3β pathways on development of in vitro cultured rabbit embryos

Published online by Cambridge University Press:  20 March 2020

Babett Bontovics
Affiliation:
NARIC, Agricultural Biotechnology Institute, Animal Biotechnology Department, 2100Gödöllő, Szent-Györgyi A. str. 4., Hungary
Pouneh Maraghechi
Affiliation:
NARIC, Agricultural Biotechnology Institute, Animal Biotechnology Department, 2100Gödöllő, Szent-Györgyi A. str. 4., Hungary
Bence Lázár
Affiliation:
NARIC, Agricultural Biotechnology Institute, Animal Biotechnology Department, 2100Gödöllő, Szent-Györgyi A. str. 4., Hungary
Mahek Anand
Affiliation:
NARIC, Agricultural Biotechnology Institute, Animal Biotechnology Department, 2100Gödöllő, Szent-Györgyi A. str. 4., Hungary
Kinga Németh
Affiliation:
NARIC, Agricultural Biotechnology Institute, Animal Biotechnology Department, 2100Gödöllő, Szent-Györgyi A. str. 4., Hungary Department of Laboratory Medicine, Semmelweis University, 1088Budapest, Szentkiralyi str. 46, Hungary
Renáta Fábián
Affiliation:
NARIC, Agricultural Biotechnology Institute, Animal Biotechnology Department, 2100Gödöllő, Szent-Györgyi A. str. 4., Hungary
Jaromír Vašíček
Affiliation:
Research Institute for Animal Production Nitra, NPPC, Hlohovecka 2, 951 41Lužianky, Slovak Republic Faculty of Biotechnology and Food Science, Slovak University of Agriculture, Hlinku 2, 949 76, Nitra, Slovak Republic
Alexander V. Makarevich
Affiliation:
Research Institute for Animal Production Nitra, NPPC, Hlohovecka 2, 951 41Lužianky, Slovak Republic
Elen Gócza*
Affiliation:
NARIC, Agricultural Biotechnology Institute, Animal Biotechnology Department, 2100Gödöllő, Szent-Györgyi A. str. 4., Hungary
Peter Chrenek
Affiliation:
Research Institute for Animal Production Nitra, NPPC, Hlohovecka 2, 951 41Lužianky, Slovak Republic Faculty of Biotechnology and Food Science, Slovak University of Agriculture, Hlinku 2, 949 76, Nitra, Slovak Republic Faculty of Animal Breeding and Biology, UTP University of Science and Technology, Mazowiecka 28, 85-084Bydgoszcz, Poland
*
Author for correspondence: Elen Gócza, NARIC, Agricultural Biotechnology Institute, Animal Biotechnology Department, 2100 Gödöllő, Szent-Györgyi A. str. 4., Hungary Tel: +36 28 526 162. Fax: +36 28 526 151. E-mail: [email protected]

Summary

Dual inhibition (2i) of Ras–MEK–ERK and GSK3β pathways enables the derivation of embryo stem cells (ESCs) from refractory mouse strains and, for permissive strains, allows ESC derivation with no external protein factor stimuli involvement. In addition, blocking of ERK signalling in 8-cell-stage mouse embryos leads to ablation of GATA4/6 expression in hypoblasts, suggesting fibroblast growth factor (FGF) dependence of hypoblast formation in the mouse. In human, bovine or porcine embryos, the hypoblast remains unaffected or displays slight-to-moderate reduction in cell number. In this study, we demonstrated that segregation of the hypoblast and the epiblast in rabbit embryos is FGF independent and 2i treatment elicits only a limited reinforcement in favour of OCT4-positive epiblast populations against the GATA4-/6-positive hypoblast population. It has been previously shown that TGFβ/Activin A inhibition overcomes the pervasive differentiation and inhomogeneity of rat iPSCs, rat ESCs and human iPSCs while prompting them to acquire naïve properties. However, TGFβ/Activin A inhibition, alone or together with Rho-associated, coiled-coil containing protein kinase (ROCK) inhibition, was not compatible with the viability of rabbit embryos according to the ultrastructural analysis of preimplantation rabbit embryos by electron microscopy. In rabbit models ovulation upon mating allows the precise timing of progression of the pregnancy. It produces several embryos of the desired stage in one pregnancy and a relatively short gestation period, making the rabbit embryo a suitable model to discover the cellular functions and mechanisms of maintenance of pluripotency in embryonic cells and the embryo-derived stem cells of other mammals.

Type
Research Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Bain, J, Plater, L, Elliott, M, Shpiro, N, Hastie, CJ, McLauchlan, H, Klevernic, I, Arthur, JS, Alessi, DR and Cohen, P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408, 297315.CrossRefGoogle ScholarPubMed
Besenfelder, U, Modl, J, Muller, M and Brem, G (1997) Endoscopic embryo collection and embryo transfer into the oviduct and the uterus of pigs. Theriogenology 47, 1051–60.CrossRefGoogle ScholarPubMed
Bolender, RP and Weibel, ER (1973) A morphometric study of the removal of phenobarbital-induced membranes from hepatocytes after cessation of treatment. J Cell Biol 56, 746–61.CrossRefGoogle Scholar
Bosze, Z, Hiripi, L, Carnwath, JW and Niemann, H (2003) The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Res 12, 541–53.CrossRefGoogle ScholarPubMed
Brons, IG, Smithers, LE, Trotter, MW, Rugg-Gunn, P, Sun, B, de Sousa Lopes, SM Chuva, Howlett, SK, Clarkson, A, Ahrlund-Richter, L, Pedersen, RA and Vallier, L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–5.CrossRefGoogle ScholarPubMed
Buehr, M, Meek, S, Blair, K, Yang, J, Ure, J, Silva, J, McLay, R, Hall, J, Ying, QL and Smith, A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287–98.CrossRefGoogle ScholarPubMed
du Puy, L, Lopes, SM, Haagsman, HP and Roelen, BA (2011) Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology 75, 513–26.CrossRefGoogle ScholarPubMed
Fang, ZF, Gai, H, Huang, YZ, Li, SG, Chen, XJ, Shi, JJ, Wu, L, Liu, A, Xu, P and Sheng, HZ (2006) Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Exp Cell Res 312, 3669–82.CrossRefGoogle ScholarPubMed
Hao, J, Li, TG, Qi, X, Zhao, DF and Zhao, GQ (2006) WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev Biol 290, 8191.CrossRefGoogle ScholarPubMed
Harris, D, Huang, B and Oback, B (2013) Inhibition of MAP2K and GSK3 signaling promotes bovine blastocyst development and epiblast-associated expression of pluripotency factors. Biol Reprod 88, 74.CrossRefGoogle ScholarPubMed
Haura, EB, Ricart, AD, Larson, TG, Stella, PJ, Bazhenova, L, Miller, VA, Cohen, RB, Eisenberg, PD, Selaru, P, Wilner, KD and Gadgeel, SM (2010) A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res 16, 2450–7.CrossRefGoogle ScholarPubMed
Honda, A, Hirose, M, Inoue, K, Ogonuki, N, Miki, H, Shimozawa, N, Hatori, M, Shimizu, N, Murata, T, Hirose, M, Katayama, K, Wakisaka, N, Miyoshi, H, Yokoyama, KK, Sankai, T and Ogura, A (2008) Stable embryonic stem cell lines in rabbits: potential small animal models for human research. Reprod Biomed Online 17, 706–15.CrossRefGoogle ScholarPubMed
Honda, A, Hirose, M and Ogura, A (2009) Basic FGF and Activin/Nodal but not LIF signaling sustain undifferentiated status of rabbit embryonic stem cells. Exp Cell Res 315, 2033–42.CrossRefGoogle Scholar
Ivics, Z, Hiripi, L, Hoffmann, OI, Mátés, L, Yau, TY, Bashir, S, Zidek, V, Landa, V, Geurts, A, Pravenec, M, Rülicke, T, Bösze, Z and Izsvák, Z (2014) Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc 9, 794–809.CrossRefGoogle ScholarPubMed
Jin, DI, Kim, DK, Im, KS and Choi, WS (2000) Successful pregnancy after transfer of rabbit blastocysts grown in vitro from single-cell zygotes. Theriogenology 54, 1109–16.CrossRefGoogle ScholarPubMed
Kawamata, M and Ochiya, T (2010) Generation of genetically modified rats from embryonic stem cells. Proc Natl Acad Sci USA 107, 14223–8.CrossRefGoogle ScholarPubMed
Kuijk, EW, van Tol, LT, Van de Velde, H, Wubbolts, R, Welling, M, Geijsen, N and Roelen, BA (2012) The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 139, 871–82.CrossRefGoogle ScholarPubMed
Liskovykh, M, Chuykin, I, Ranjan, A, Safina, D, Popova, E, Tolkunova, E, Mosienko, V, Minina, JM, Zhdanova, NS, Mullins, JJ, Bader, M, Alenina, N and Tomilin, A (2011) Derivation, characterization, and stable transfection of induced pluripotent stem cells from Fischer344 rats. PLoS One 6, e27345.CrossRefGoogle ScholarPubMed
Lorusso, PM, Adjei, AA, Varterasian, M, Gadgeel, S, Reid, J, Mitchell, DY, Hanson, L, DeLuca, P, Bruzek, L, Piens, J, Asbury, P, Van Becelaere, K, Herrera, R, Sebolt-Leopold, J and Meyer, MB (2005) Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 23, 5281–93.CrossRefGoogle ScholarPubMed
Maraghechi, P, Hiripi, L, Toth, G, Bontovics, B, Bosze, Z and Gócza, E (2013) Discovery of pluripotency-associated microRNAs in rabbit preimplantation embryos and embryonic stem-like cells. Reproduction 145, 421–37.CrossRefGoogle ScholarPubMed
Men, H and Bryda, EC (2013) Derivation of a germline competent transgenic Fischer 344 embryonic stem cell line. PLoS One 8, e56518.CrossRefGoogle ScholarPubMed
Nichols, J and Smith, A (2011) The origin and identity of embryonic stem cells. Development 138, 38.CrossRefGoogle ScholarPubMed
Nichols, J, Silva, J, Roode, M and Smith, A (2009) Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136, 3215–22.CrossRefGoogle ScholarPubMed
Osteil, P, Tapponnier, Y, Markossian, S, Godet, M, Schmaltz-Panneau, B, Jouneau, L, Cabau, C, Joly, T, Blachère, T, Gócza, E, Bernat, A, Yerle, M, Acloque, H, Hidot, S, Bosze, Z, Duranthon, V, Savatier, P and Afanassieff, M (2013) Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naive pluripotency. Biol Open 2, 613–28.CrossRefGoogle ScholarPubMed
Piliszek, A, Madeja, ZE and Plusa, B (2017) Suppression of ERK signalling abolishes primitive endoderm formation but does not promote pluripotency in rabbit embryo. Development 144, 3719–30.CrossRefGoogle Scholar
Plusa, B, Piliszek, A, Frankenberg, S, Artus, J and Hadjantonakis, AK (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135, 3081–91.CrossRefGoogle ScholarPubMed
Puschel, B, Bitzer, E and Viebahn, C (2010) Live rabbit embryo culture. Cold Spring Harb Protoc 2010, pdb.prot5352.Google ScholarPubMed
Qi, X, Li, TG, Hao, J, Hu, J, Wang, J, Simmons, H, Miura, S, Mishina, Y and Zhao, GQ (2004) BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci USA 101, 6027–32.CrossRefGoogle ScholarPubMed
Rathjen, J, Lake, JA, Bettess, MD, Washington, JM, Chapman, G and Rathjen, PD (1999) Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 112, 601–12.Google ScholarPubMed
Rodriguez, A, Allegrucci, C and Alberio, R (2012) Modulation of pluripotency in the porcine embryo and iPS cells. PLoS One 7, e49079.CrossRefGoogle ScholarPubMed
Roode, M, Blair, K, Snell, P, Elder, K, Marchant, S, Smith, A and Nichols, J (2012) Human hypoblast formation is not dependent on FGF signalling. Dev Biol 361, 358–63.CrossRefGoogle Scholar
Sato, N, Meijer, L, Skaltsounis, L, Greengard, P and Brivanlou, AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10, 5563.CrossRefGoogle ScholarPubMed
Savatier, P, Osteil, P and Tam, PP (2017) Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: slippery slope, terrace and cliff. Stem Cell Res 19, 104–12.CrossRefGoogle ScholarPubMed
Schmaltz-Panneau, B, Jouneau, L, Osteil, P, Tapponnier, Y, Afanassieff, M, Moroldo, M, Jouneau, A, Daniel, N, Archilla, C, Savatier, P and Duranthon, V (2014) Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo. Anim Reprod Sci 149, 6779.CrossRefGoogle ScholarPubMed
Shen, MM and Leder, P (1992) Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc Natl Acad Sci USA 89, 8240–4.CrossRefGoogle ScholarPubMed
Sheth, PR, Liu, Y, Hesson, T, Zhao, J, Vilenchik, L, Liu, YH, Mayhood, TW and Le, HV (2011) Fully activated MEK1 exhibits compromised affinity for binding of allosteric inhibitors U0126 and PD0325901. Biochemistry 50, 7964–76.CrossRefGoogle ScholarPubMed
Tapponnier, Y, Afanassieff, M, Aksoy, I, Aubry, M, Moulin, A, Medjani, L, Bouchereau, W, Mayère, C, Osteil, P, Nurse-Francis, J, Oikonomakos, I, Joly, T, Jouneau, L, Archilla, C, Schmaltz-Panneau, B, Peynot, N, Barasc, H, Pinton, A, Lecardonnel, J, Gócza, E, Beaujean, N, Duranthon, V and Savatier, P (2017) Reprogramming of rabbit induced pluripotent stem cells toward epiblast and chimeric competency using Kruppel-like factors. Stem Cell Res 24, 106–17.CrossRefGoogle ScholarPubMed
Tesar, PJ, Chenoweth, JG, Brook, FA, Davies, TJ, Evans, EP, Mack, DL, Gardner, RL and McKay, RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–9.CrossRefGoogle ScholarPubMed
Thisse, B and Thisse, C (2005) Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 287, 390402.CrossRefGoogle ScholarPubMed
Thomson, JA, Kalishman, J, Golos, TG, Durning, M, Harris, CP, Becker, RA and Hearn, JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92, 7844–8.CrossRefGoogle ScholarPubMed
Thomson, JA, Itskovitz-Eldor, J, Shapiro, SS, Waknitz, MA, Swiergiel, JJ, Marshall, VS and Jones, JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–7.CrossRefGoogle ScholarPubMed
Vallier, L, Alexander, M and Pedersen, RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118, 4495–509.CrossRefGoogle ScholarPubMed
Wang, S, Tang, X, Niu, Y, Chen, H, Li, B, Li, T, Zhang, X, Hu, Z, Zhou, Q and Ji, W (2007) Generation and characterization of rabbit embryonic stem cells. Stem Cells 25, 481–9.CrossRefGoogle ScholarPubMed
Watanabe, K, Ueno, M, Kamiya, D, Nishiyama, A, Matsumura, M, Wataya, T, Takahashi, JB, Nishikawa, S, Nishikawa, S, Muguruma, K and Sasai, Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25, 681–6.CrossRefGoogle ScholarPubMed
Xu, RH, Chen, X, Li, DS, Li, R, Addicks, GC, Glennon, C, Zwaka, TP and Thomson, JA (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20, 1261–4.CrossRefGoogle ScholarPubMed
Xu, RH, Peck, RM, Li, DS, Feng, X, Ludwig, T and Thomson, JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2, 185–90.CrossRefGoogle ScholarPubMed
Ying, QL, Wray, J, Nichols, J, Batlle-Morera, L, Doble, B, Woodgett, J, Cohen, P and Smith, A (2008) The ground state of embryonic stem cell self-renewal. Nature 453, 519–23.CrossRefGoogle ScholarPubMed
Zweigerdt, R, Olmer, R, Singh, H, Haverich, A and Martin, U (2011) Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc 6, 689700.CrossRefGoogle ScholarPubMed

Bontovics et al. supplementary material

Bontovics et al. supplementary material

Download Bontovics et al. supplementary material(Video)
Video 28.4 MB