Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T20:55:03.907Z Has data issue: false hasContentIssue false

Effect of dehydroleucodine on meiosis reinitiation in Bufo arenarum denuded oocytes

Published online by Cambridge University Press:  01 May 2007

G. Sánchez Toranzo
Affiliation:
Departamento de Biología del Desarrollo, Chacabuco, San Miguel de Tucumán, Argentina
O.S. Giordano
Affiliation:
Departamento de Biología del Desarrollo, Chacabuco, San Miguel de Tucumán, Argentina
L.A. López
Affiliation:
Departamento de Biología del Desarrollo, Chacabuco, San Miguel de Tucumán, Argentina
M.I. Bühler*
Affiliation:
Departamento de Biología del Desarrollo, Chacabuco, San Miguel de Tucumán, Argentina
*
All correspondence to: Marta I. Bühler, Departamento de Biología del Desarrollo, Chacabuco 461, 4000 San Miguel de Tucumán, Argentina. Fax: +54 381 4248025. e-mail: [email protected]

Summary

In amphibian oocytes meiosis, the transition from G2 to M phase is regulated by the maturation promoting factor (MPF), a complex of the cyclin-dependent kinase p34/cdc2 and cyclin B. In immature oocytes there is an inactive complex (pre-MPF), in which cdc2 is phosphorylated on both Thr-161 and Thr-14/Tyr-15 residues. The dephosphorylation of Thr-14/Tyr-15 is necessary for the start of MPF activation and it is induced by the activation of cdc25 phosphatase. Late, to complete the activation, a small amount of active MPF induces an auto-amplification loop of MPF stimulation (MPF amplification). Dehydroleucodine (DhL) is a sesquiterpenic lactone that inhibits mammalian cell proliferation in G2. We asked whether DhL interferes with MPF activation. For this question, the effect of DhL (up to 30 μM) on the resumption of meiosis was evaluated, and visualized by germinal vesicle break down (GVBD), of Bufo arenarum oocytes induced in vitro by either: (i) removing follicle cells; (ii) progesterone stimulation; (iii) VG-content injection; or (iv) injection of mature cytoplasm. The results show that DhL induced GVBD inhibition, in a dose-dependent manner, in spontaneous and progesterone-induced oocyte maturation. Nevertheless, DhL at the doses assayed had no effect on GVBD induced by mature cytoplasm injection, but exerted an inhibitory effect on GVBD induced by GV content. On the basis of these results, we interpreted that DhL does not inhibit MPF amplification and that the target of DhL is any event in the early stages of the cdc25 activation cascade.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bühler, M.I. & Petrino, T.R. (1983). Simplified technique for the observation of aster in amphibians eggs stratified by centrifugation. Microscopic 40, 1112.Google ScholarPubMed
Cruzado, M., Castro, C., Fernández, D., Gomez, L., Roque, M., Giordano, O.E. & Lopez, L.A. (2005). Dehydroleucodine inhibits vascular smooth muscle cell proliferation in G2 phase. Cell Mol. Biol. 51, 525–30.Google ScholarPubMed
Dekel, N. (2005). Cellular biochemical and molecular mechanisms regulating oocytes maturation. Mol. Cell Endocrinol. 29, 1925.CrossRefGoogle Scholar
Duckworth, B.C., Weaver, J.S. & Rudeman, J.V. (2002). G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc. Acad. Sci. USA 99, 16794–9.CrossRefGoogle ScholarPubMed
Galas, S., Barakat, H., Dorée, M. & Picard, A. (1993). A nuclear factor required for specific translation of cyclin B may control the timing of first meiotic cleavage in starfish oocytes. Mol. Biol. Cell 4, 12951306.CrossRefGoogle ScholarPubMed
Gautier, J. & Maller, J.L. (1991). Cyclin B in Xenopus oocytes: implications for the mechanism of pre-MPF activation. EMBO J. 10, 177–82.CrossRefGoogle ScholarPubMed
Giordano, O.S., Guerreiro, E., Pestchanker, M.J., Guzman, J., Pastor, D. & Guardia, T. (1990). The gastric cytoprotective effect of several sesquiterpene lactones. J. Nat. Prod. 53, 803–9.CrossRefGoogle ScholarPubMed
Giordano, O.S., Pestchanker, M.J., Guerreiro, E., Saad, J.R., Enriz, R.D., Rodriguez, A.M., Jauregui, E.A., Guzman, J., Maria, A.O., & Wendel, G.H. (1992). Structure–activity relationship in the gastric cytoprotective effect of several sesquiterpene lactones. J. Med. Chem. 35, 2452–8.CrossRefGoogle ScholarPubMed
Kishimoto, T., Hirai, S. & Kanatani, H. (1981). Role of the germinal vesicle in producing maturation-promoting factor in starfish. Dev. Biol. 8, 177–81.CrossRefGoogle Scholar
Kobayashi, H., Minshull, J., Ford, C., Golsteyn, R., Poon, P. & Hunt, T. (1991). On the synthesis and destruction of A- and B-type cyclins during oogenesis and meiotic maturation in Xenopus laevis. J. Cell Biol. 114, 755–65.CrossRefGoogle ScholarPubMed
Lopez, M.E., Giordano, O.S. & Lopez, L.A. (2002). Sesquiterpene lactone dehydroleucodine selectively induces transient arrest in G2 in Allium cepa root meristematic cells. Protoplasma 219, 82–8.Google ScholarPubMed
Minshull, J., Murray, A., Colman, A. & Hunt, T. (1991). Xenopus oocytes maturation does not requiere new cyclin synthesis. J. Cell Biol. 114, 767–72.CrossRefGoogle ScholarPubMed
Ookada, K., Hisanaga, S., Okano, T. & Kishimoto, T. (1992). Relocation and distinct subcellular localization of p34cdc2–cyclin B complex at meiosis reinitiation in starfish oocytes. EMBO J. 11, 1763–72.CrossRefGoogle Scholar
Perdiguero, E. & Nebreda, A. (2004). Regulation of cdc25 activity during the meiotic G2/M transition. Cell Cycle 3, 733–7.CrossRefGoogle ScholarPubMed
Picard, A. & Dorée, M. (1984). The role of the germinal vesicle in producing maturation-promoting factor (MPF) as revealed by the removal and transplantation of nuclear material in starfish oocytes. Dev. Biol. 104, 357–65.CrossRefGoogle ScholarPubMed
Picard, A., Labbe, J.C., Barakat, H., Cavadore, J.C. & Doree, M. (1991). Okadaic acid mimics a nuclear component required for cyclin B–cdc2 kinase microinjection to drive starfish oocytes into M phase. J. Cell Biol. 115, 337–44.CrossRefGoogle ScholarPubMed
Sanchez Toranzo, G., Bonilla, F., Zelarayán, L., Oterino, J. & Bühler, M.I. (2006). Activation of maturation promoting factor in Bufo arenarum oocytes: injection of mature cytoplasm and germinal vesicle contents. Zygote 14, 112.Google Scholar
Schmitt, A. & Nebreda, A.R. (2002) Signalling pathways in oocyte meiotic maturation. J. Cell Sci. 115, 2457–9.CrossRefGoogle ScholarPubMed
Strausfeld, U., Labée, J.C., Fesquet, D., Cavadore, J.C., Picard, A., Sadhu, K., Russell, P. & Dorée, M. (1991). Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human cdc25 protein. Nature (Lond.) 351, 242–5.CrossRefGoogle ScholarPubMed
Wasserman, W.J. & Masui, Y. (1975). Effects of cycloheximide on a cytoplasmic factor initiating meiotic maturation in Xenopus oocytes. Exp. Cell Res. 91, 381–8.CrossRefGoogle Scholar
Zelarayán, L., Oterino, J. & Bühler, M. I. (1995). Spontaneous maturation in Bufo arenarum oocytes: follicle wall involvement, respiratory activity and seasonal influences. J. Exp. Zool. 272, 356–62.CrossRefGoogle ScholarPubMed