Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T11:40:10.987Z Has data issue: false hasContentIssue false

Early development of Astronotus ocellatus under stereomicroscopy and scanning electron microscopy

Published online by Cambridge University Press:  18 March 2011

Maria do Carmo Faria Paes*
Affiliation:
Aquaculture Center of UNESP – CAUNESP – Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884–900, Jaboticabal, SP, Brazil.
Lilian Cristina Makino
Affiliation:
Aquaculture Center of UNESP – CAUNESP – Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884–900, Jaboticabal, SP, Brazil.
Leonardo Avendaño Vasquez
Affiliation:
Universidad Nacional da Colombia, Carrera 45 N° 26–85 – Edificio Uriel Gutiénez, Bogotá – D.C., Colombia.
João Batista Kochenborger Fernandes
Affiliation:
Aquaculture Center of UNESP – CAUNESP – Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884–900, Jaboticabal, SP, Brazil.
Laura Satiko Okada Nakaghi
Affiliation:
Aquaculture Center of UNESP – CAUNESP – Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884–900, Jaboticabal, SP, Brazil.
*
All correspondence to: Maria do Carmo Faria Paes. Aquaculture Center of UNESP – CAUNESP – Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884–900, Jaboticabal, SP, Brazil. Tel:/Fax: +55 16 3209 2656. e-mail: [email protected].

Summary

Astronotus ocellatus, popularly known as Oscar, is a cichlid fish from the Amazon basin (Brazil) with a great potential for fish farming. The aim of this research is to describe the morphology of eggs and larvae of A. ocellatus under stereomicroscopy and scanning electron microscopy. Eggs from natural spawnings were taken to hatcheries, collected at previously established time periods and then analysed. Oscar's eggs are demersal, adhesive and fragile to touch, with a slightly oval shape. The fertile eggs are yellowish in colour and when unfertilized are a white opaque colour. In the initial collection (IC), the majority of eggs were found to be at the gastrula phase with 30% epiboly. At 12 h after the IC, the formation of the embrionary axis and somites was observed, followed by differentiation of the tail and of the head. Fifteen hours after the IC, the emergence of the optic and otic vesicles, and of adhesive glands and the yolk pigmentation was observed. Larval hatching took place between 46 and 58 h after the first collection, at an average temperature of 27.45 ± 2.13°C. The larval stage was characterized by the development of the heart, fins, branchial apparatus, neuromasts, taste buds and adhesive glands on the head. Larval development to yolk absorption took a period of 257 h. These results provide important information for reproduction, rearing and preservation of A. ocellatus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anjos, H.D.B. & Anjos, C. R. (2006). Biologia reprodutiva e desenvolvimento embrionário e larval do cardinal tetra, Paracheirodon axelrodi, Schultz, 1956 (Characiformes: Characidae), em laboratório. Bol. Inst. Pesca 32, 151–66.Google Scholar
Araujo-Lima, C.A.R.M. & Bittencourt, M.M. (2002). A reprodução e o início da vida de Hoplias malabaricus (Erythinidae; Characiformes) na Amazônia Central. Acta Amaz. 32, 693–7.Google Scholar
Bonislawska, M., Formicki, K. & Winnicki, A. (2000). Size of eggs and duration of embryogenesis in fishes. Acta Ichthyol. Piscat. 30, 6171.Google Scholar
Braga, R.A. (1982). Freqüência de desova de reprodutores de apaiari, Astronotus ocellatus ocellatus Spix (Pisces, Cichlidae), mantidos em cativeiro. DNOCS 1, 351–7.Google Scholar
Caprio, J. (1988). Peripheral filters and chemoreceptor cells in fishes. In: Sensory Biology of Aquatic Animals (eds Atema, J., Fay, R.R., Popper, A.N. & Tavolga, W.N.). pp. 313–38. New York: Springer-Verlag.CrossRefGoogle Scholar
Cestarolli, M. A. (2005). Larvicultura de pintado Pseudoplatystoma coruscans (Agassiz, 1829): aspectos da alimentação inicial e do desenvolvimento de estruturas sensoriais. Thesis, Jaboticabal, Centro de Aqüicultura, Universidade Estadual Paulista.Google Scholar
Chacon, J. O. (1959). Evolução de ovo, larva e alevino de apaiari, Astronotus ocellatus ocellatus. DNOCS 28, 3147.Google Scholar
Fishbase (2010). In: www.fishbase.org, accessed on August 28, 2010.Google Scholar
Fontenele, O. & Nepomuceno, F.H. (1983). Exame dos resultados da introdução do Astronotus ocellatus ocellatus (Agassiz, 1849), em açudes do Nordeste do Brasil. DNOCS 41, 8599.Google Scholar
Fury, J.R. & Morello, F.A. (1994). The contribution of an exotic fish, the oscar, to the sport fishery of the Everglades water conservation areas. In: Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 48. Biloxi. Proceedings. 474–81.Google Scholar
Gisbert, E., Williot, P. & Castelló-Orvay, F. (2000). Influence of egg size on growth and survival to early stages of Siberian sturgeon (Acipenser baeri) under small scale hatchery conditions. Aquaculture 183, 8394.Google Scholar
Hu, N., Sedmera, D., Yost, H.J. & Clark, E.B. (2000). Structure and function of the developing zebrafish heart. Anat Record 260, 148–57.Google Scholar
Machado, C.E.M. (1983). Criação de apaiari. São Paulo: Nobel.Google Scholar
Matsuoka, M. (2001). Development of sense organs in the Japanese sardine Sardinops melanostictus. Fish. Sci. 67, 1036–45.CrossRefGoogle Scholar
Morais, B.F. (2005). Sistema intensivo de criação e manejo de cria do acará-disco, Symphysodon spp. Masters degree, Universidade Federal Rural de Pernambuco, Recife.Google Scholar
Morrison, C.M., Miyake, T. & Wright, J.R. (2001). Histological study of the development of the embryo and early larva of Oreochromis niloticus (Pisces: Cichlidae). J. Morphol. 247, 172–95.Google Scholar
Nakatani, K., Agostinho, A.A., Baumgartner, G., Bialetzki, A., Sanches, P.V. & Cavicchioli, M. (2001). Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: Eduem/Nupélia.Google Scholar
Osman, G.M., Wuertz, S., Mekkawy, I.A., Verreth, J. & Kirschbaum, F. (2008). Early development of the African catfish Clarias gariepinus (Burchell, 1822), focusing on the ontogeny of selected organs. J. Applied Ichthyol. 24, 187–95.Google Scholar
Osse, J.W.M. (1990). Form changes in fish larvae in relation to changing demands of function. J. Zool. 40, 362–85.Google Scholar
Reynalte-Tataje, D.R., Zaniboni-Filho, E. & Muelbert, B. (2001) Stages of the embryonic development of the piavuçu Leporinus macrocephalus (Garavello e Britski, 1988). Act. Sci. 23, 823–7.Google Scholar
Ribeiro, C.R., Leme dos Santos, H.S. & Bolsan, A.A. (1995). Estudo comparativo da embriogênese de peixes ósseos (PACU, Piaractus mesopotamicus; tambaqui, Colossoma macropomum e híbrido tambacu). Rev. Bras. Biol. 55, 6578.Google Scholar
Perini, V.R., Sato, Y., Rizzo, E. & Bazzoli, N. (2009). Biology of eggs, embryos and larvae of Rhinelepis aspera (Spix & Agassiz, 1829) (Pisces; Siluriformes). Zygote 18, 159171.Google Scholar
Silva, J.W.B., Regis, R.C. & Bezerra, A.T. (1993). Produção de alevinos de apaiari, Astronotus ocellatus ocellatus (Cuvier, 1829) Swainson, 1839, em viveiros. Ciên. Agron. 24, 22–6.Google Scholar
Suzuki, H.I. (1992). Variações na morfologia ovariana e no desenvolvimento do folículo de peixes teleósteos da bacia do rio Paraná no trecho entre a foz do rio Paranapanema e a do rio Iguaçu. Masters degree, Universidade Federal do Paraná, Curitiba.Google Scholar
Tengjaroenkul, B., Smith, B.J., Smith, S.A. & Chatreewogsin, U. (2002). Ontogenic development of the intestinal enzymes of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 211, 241–51.Google Scholar