Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:15:10.464Z Has data issue: false hasContentIssue false

Development of Betta splendens embryos and larvae reveals variation in pigmentation patterns

Published online by Cambridge University Press:  21 July 2015

Alexis N. Carey
Affiliation:
Transylvania University, 300 N. Broadway, Lexington, KY 40508, USA.
Benjamin H. Lyvers
Affiliation:
Transylvania University, 300 N. Broadway, Lexington, KY 40508, USA.
Rachel N. Ferrill
Affiliation:
Transylvania University, 300 N. Broadway, Lexington, KY 40508, USA.
Rachel L. Johnson
Affiliation:
Transylvania University, 300 N. Broadway, Lexington, KY 40508, USA.
Anne Marie Dumaine
Affiliation:
Transylvania University, 300 N. Broadway, Lexington, KY 40508, USA.
Belinda J. Sly*
Affiliation:
Transylvania University, 300 N. Broadway, Lexington, KY 40508, USA.
*
All correspondence to: Belinda J. Sly. Transylvania University, 300 N. Broadway, Lexington, KY 40508, USA. Tel: +1 859 233 8241. Fax: +1 859 233 8171. E-mail: [email protected]

Summary

Vertebrate pigmentation provides an ideal system for studying the intersections between evolution, genetics, and developmental biology. Teleost fish, with their accessible developmental stages and intense and diverse colours produced by chromatophores, are an ideal group for study. We set out to test whether Betta splendens is a good model organism for studying the evolution and development of diverse pigmentation. Our results demonstrate that B. splendens can be bred to produce large numbers of offspring with easily visualized pigment cells. Depending on the colour of the parents, there was variation in larval pigmentation patterns both within and between breeding events. In juveniles the developing adult pigmentation patterns showed even greater variation. These results suggest that B. splendens has great potential as a model organism for pigmentation studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braasch, I., Schartl, M. & Volff, J.N. (2007). Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol. Biol. 7, 74.CrossRefGoogle ScholarPubMed
Duarte, S.C., de Faria e Vasconcellos, B., Vidal, M.V. Jr, Ferreira, A.V., da Cruz Mattoas, D. & Branco, A.T. (2012). Ontogeny and embryonic description of Betta splendens, Perciformes (Regan, 1920). Rev. Bras. Saúde Prod. Anim. 13, 880–93.Google Scholar
Goda, M. & Fujii, R. (1995). Blue chromatophores in two species of callionymid fish. Zool. Sci. 12, 811–3.Google Scholar
Goodrich, H.B. & Mercer, R.N. (1934). Genetics and colors of the Siamese fighting fish. Science 79, 318–9.CrossRefGoogle ScholarPubMed
Jeon, K., Friedlander, J., Jarvik, J. & Fujii, R. (1993). Cytophysiology of fish chromatophores. Int. Rev. Cytol. 143, 191255.Google Scholar
Kelsh, R.N., Brand, M., Jiang, Y.J., Heisenberg, C.P., Lin, S., Haffter, P., Odenthal, J., Mullins, M.C., van Eeden, F.J.M., Furutani-Seiki, M., Granato, M., Hammerschmidt, M., Kane, D.A., Warga, R.M., Beuchle, D., Vogelsang, L. & Nusslein-Volhard, C. (1996). Zebrafish pigmentation mutations and the processes of neural crest development. Development 123, 369–83.Google Scholar
Kelsh, R.N., Inoue, C., Momoi, A., Kondoh, H., Furutani-Seiki, M., Ozato, K. & Wakamatsu, Y. (2004). The Tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development. Mech. Dev. 121, 841–59.Google Scholar
Kelsh, R.N., Schmid, B. & Eisen, J.S. (2000). Genetic analysis of melanophore development in zebrafish embryos. Dev. Biol. 225, 277–93.Google Scholar
Kondo, S. & Muira, T. (2010). Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–20.Google Scholar
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dynam. 203, 253310.Google Scholar
Lamoreux, M., Kelsh, R., Wakamatsu, Y. & Ozato, K. (2005). Pigment pattern formation in the medaka embryo. Pigment Cell Res. 18, 6473.CrossRefGoogle Scholar
Lucas, G.A. (1972). A mutation limiting the development of red pigmentation in Betta splendens., the Siamese fighting fish. Proc. Iowa Acad. Sci. 79, 31–3.Google Scholar
Mills, M. & Patterson, L. (2009). Not just black and white: pigment pattern development and evolution in vertebrates. Semin. Cell. Dev. Biol. 20, 7281.Google Scholar
Monvises, A., Nuangsaeng, B., Sriwattanarothai, N. & Panijpan, B. (2009). The Siamese fighting fish: well-known generally but little-known scientifically. Science Asia 35, 816.Google Scholar
Parichy, D.M. (2006). Evolution of Danio pigment pattern development. Heredity 97, 200–10.Google Scholar
Patterson, L.B. & Parichy, D.M. (2013). Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation. PLoS Genet. 9, e1003561.CrossRefGoogle ScholarPubMed
Quigley, I.K. & Parichy, D.M. (2002). Pigment pattern formation in zebrafish: a model for developmental genetics and the evolution of form. Microsc. Res. Tech. 58, 442–55.Google Scholar
Raff, R. (2000). Evo-devo: the evolution of a new discipline. Nat. Rev. Genet. 1, 74–9.Google Scholar
Sing, A.P., Schach, U. & Nusslein-Volhard, C. (2014). Proliferation., dispersal., and patterned aggregation of iridophores in the skin prefigure striped colouration of zebrafish. Nat. Cell Biol. 16, 604–12.Google Scholar
Valentin, F.N., do Nascimento, N.F., da Silva, R.C., Fernandes, J.B.K., Giannecchini, L.G. & Nakaghi, L.S.O. (2015). Early development of Betta splendens under stereomicroscopy and scanning electron microscopy. Zygote 23, 247–56.Google Scholar
Wallbrunn, H.M. (1958). Genetics of the Siamese fighting fish, Betta splendens . Genetics 43, 289–99.Google Scholar