Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T06:51:45.278Z Has data issue: false hasContentIssue false

Development and quality of porcine embryos in different culture system and embryo-producing methods

Published online by Cambridge University Press:  01 February 2007

S-A. Ock
Affiliation:
Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Chinju, Republic of Korea660–701.
S-L. Lee
Affiliation:
Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Chinju, Republic of Korea660–701.
J-G. Kim
Affiliation:
Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Chinju, Republic of Korea660–701.
B-M. Kumar
Affiliation:
Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Chinju, Republic of Korea660–701.
S. Balasubramanian
Affiliation:
Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Chinju, Republic of Korea660–701. Department of Clinics, Madras Veterinary College, Tamilnadu Veterinary and Animal Sciences University, Chennai–600 007, Tamil Nadu, India.
S-Y. Choe
Affiliation:
Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Chinju, Republic of Korea660–701.
G-J. Rho*
Affiliation:
Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Chinju, Republic of Korea660–701.
*
All correspondence to: G-J. Rho, Department of Obstetrics and Theriogenology, College of Veterinary Medicine, Gyeongsang National University, 900 Gazwa, Chinju, Republic of Korea 660–701. Tel: +82 55 751 5824. Fax: +82 55 751 5803. e-mail: [email protected]

Summary

In this study, the developmental ability and cellular composition of porcine IVF, parthenote and somatic cell nuclear transfer (SCNT) embryos were evaluated following different in vitro culture systems. Group 1, embryos were cultured in NCSU-23 with 5.55 mM D-glucose (NCSU+) until day 6 on 20% O2 or 5% O2 (Group 2). Group 3, embryos were cultured in D-glucose-free NCSU-23 (NCSU−) with 0.17 mM Na pyruvate/2.73 mM Na lactate for 58 h and subsequently cultured in NCSU+ until day 6 (NCSU −/+) on 20% O2 or 5% O2 (Group 4). IVF blastocysts did not differ significantly with O2 concentrations, but differed significantly with major energy source (glucose and pyruvate/lactate). In Group 3 and 4 IVF blastocysts, the total cell number and apoptosis rates were not significantly different with different O2 concentrations. Blastocyst rate, total cell number and apoptosis rate in Groups 3 and 4 parthenote embryos also were not significantly different. Parthenote and SCNT, under the same culture treatment, exhibited significant differences in blastocyst and apoptosis rates (47.5 ± 16.1 vs. 24.0 ± 4.0 and 4.9 ± 9.0 vs. 22.8 ± 23.3). Apoptosis-generating rate increased in the order parthenote, IVF and then SCNT. In conclusion, in vitro development of porcine embryos was not affected by O2 concentrations but was affected by major energy source. Even so, the concentration of each major energy source and the timing of its inclusion in culture could accomplish relatively high embryonic development, the apoptosis rate stressed that more work still needs to be done in developing a better defined culture system that could support SCNT embryos equivalent to in vivo preimplantation porcine embryos.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett, D.K. & Bavister, B.D. (1996). What is the relationship between the metabolism of preimplantation embryos and their developmental competence? Mol. Reprod. Dev. 43, 105–33.3.0.CO;2-4>CrossRefGoogle Scholar
Booth, P.J., Holm, P. & Callesen, H. (2005). The effect of oxygen tension on porcine embryonic development is dependent on embryo type. Theriogenology 63, 2040–52.CrossRefGoogle ScholarPubMed
Cheong, H.T., Park, K.W., Im, G.S., Lai, L., Sun, Q.Y., Day, B.N. & Prather, R.S. (2002). Effect of elevated Ca2+ concentration in fusion/activation medium on the fusion and development of porcine fetal fibroblast nuclear transfer embryos. Mol. Reprod. Dev. 61, 488–92.CrossRefGoogle ScholarPubMed
Cui, X.S., Jeong, Y.J., Jun, J.H. & Kim, N.H. (2005). Insulin-like growth factor-I alters apoptosis related genes and reduces apoptosis in porcine parthenotes developing in vitro. Theriogenology 63, 1070–80.CrossRefGoogle ScholarPubMed
Day, B.N., Abeydeera, L.R., Johnson, L.A., Welch, G.R., Wang, W.H., Cantley, T.C. & Rieke, A. (1998). Birth of piglets preselected for gender following in vitro fertilization of in vitro matured pig oocytes by X and Y bearing spermatozoa stored by high speed flow cytometry. Theriogenology 50, 981–8.Google Scholar
De Sousa, P.A., Dobrinsky, J.R., Zhu, J., Archibald, A.L., Ainslie, A., Bosma, W., Bowering, J., Bracken, J., Ferrier, P.M., Fletcher, J., Gasparrini, B., Harkness, L., Johnston, P., Ritchie, M., Ritchie, W.A., Travers, A., Albetini, D., Dinnyes, A., King, T.J. & Wilmut, I. (2002). Somatic cell nuclear transfer in the pig: control of pronuclear formation and integration with improved method for activation and maintenance of pregnancy. Biol. Reprod. 66, 642–50.CrossRefGoogle ScholarPubMed
Fahrudin, M., Otoi, T., Karja, N.W.K., Mori, M., Murakami, M. & Suzuki, T. (2002). Analysis of DNA fragmentation in bovine somatic nuclear transfer embryos using TUNEL. Reproduction 124, 813–9.CrossRefGoogle ScholarPubMed
Fan, H.Y. & Sun, Q.Y. (2004). In vitro maturation and fertilization of pig oocytes. Methods Mol. Biol. 253, 227–34.Google ScholarPubMed
Fischer, B. & Bavister, B.D. (1993). Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99, 673–9.CrossRefGoogle ScholarPubMed
Funahashi, H., Kim, N.H., Stumpf, T.T., Cantley, T.C. & Day, B.N. (1996). Presence of organic osmolytes in maturation medium enhances cytoplasmic maturation of porcine oocytes. Biol. Reprod. 54, 1412–9.CrossRefGoogle ScholarPubMed
Gardner, D.K. & Leese, H.J. (1988). The role of glucose and pyruvate transport in regulating nutrient utilization by preimplantation mouse embryos. Development 104, 423–9.CrossRefGoogle ScholarPubMed
Gjorret, J.O., Wengle, J., King, W.A., Schellander, K. & Hyttel, P. (2002). Occurrence of apoptosis in bovine embryos reconstructed by nuclear transfer of derived in vivo. Theriogenology 57, 495.Google Scholar
Gjorret, J.O., Knijn, H.M., Dieleman, S.J., Avery, B., Larsson, L.I. & Maddox-Hyttel, P. (2003). Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol. Reprod. 69, 1193–200.CrossRefGoogle ScholarPubMed
Gjorret, J.O., Wengle, J., Maddox-Hyttel, P. & King, W.A. (2005). Chronological appearance of apoptosis in bovine embryos reconstructed by somatic cell nuclear transfer from quiescent granulosa cells. Reprod. Domest. Anim. 40, 210–16.CrossRefGoogle ScholarPubMed
Hao, Y., Lai, L., Mao, J., Im, G.S., Bonk, A. & Prather, R.S. (2003). Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol. Reprod. 69, 501–7.CrossRefGoogle ScholarPubMed
Hao, Y., Lai, L., Mao, J., Im, G.S., Bonk, A. & Prather, R.S. (2004). Apoptosis in parthenogenetic preimplantation porcine embryos. Biol. Reprod. 70, 1644–9.CrossRefGoogle ScholarPubMed
Im, G.S., Yang, B.S., Lai, L., Liu, Z., Hao, Y. & Prather, R.S. (2005). Fragmentation and development of preimplantation porcine embryos derived by parthenogenetic activation and nuclear transfer. Mol. Reprod. Dev. 71, 159–65.CrossRefGoogle ScholarPubMed
Karja, N.W., Medvedev, S., Onishi, A., Fuchimoto, D., Iwamoto, M., Otoi, T. & Nagai, T. (2004). Effect of replacement of pyruvate/lactate in culture medium with glucose on preimplantation development of porcine embryos in vitro. J. Reprod. Dev. 50, 587–92.CrossRefGoogle ScholarPubMed
Kidson, A., Rubio-Pomar, F.J., Van Knegsel, A., Van Tol, H.T., Hazeleger, W. & Ducro-Steverink, D.W. (2004). Quality of porcine blastocysts produced in vitro in the presence or absence of GH. Reproduction 127, 165–77.CrossRefGoogle ScholarPubMed
Kikuchi, K., Kashiwazaki, N., Noguchi, J., Shimada, A., Takahashi, R., Hirabayashi, M., Shino, M., Ueda, M. & Kaneko, H. (1999). Developmental competence after transfer to recipients, of porcine matured, fertilized, and cultured in vitro. Biol. Reprod. 60, 336–40.CrossRefGoogle ScholarPubMed
Kikuchi, K., Onishi, A., Kashiwazaki, N., Iwamoto, M., Noguchi, J., Kaneko, H., Akita, T. & Nagai, T. (2002). Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol. Reprod. 66, 1033–41.CrossRefGoogle ScholarPubMed
Kim, J.H., Niwa, K., Lim, J.M & Okuda, K. (1993). Effects of phosphate, energy substrates, and amino acids on development of in vitro-matured, in vitro-fertilized bovine oocytes in a chemically defined, protein-free culture medium. Biol. Reprod. 48, 1320–5.CrossRefGoogle Scholar
Kitagawa, Y., Suzuki, K., Yoneda, A. & Watanabe, T. (2004). Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62, 1186–97.CrossRefGoogle ScholarPubMed
Lee, G.S., Hyun, S.H., Kim, H.S., Kim, D.Y., Lee, S.H., Lim, J.M., Lee, E.S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2003a). Improvement of a porcine somatic cell nuclear transfer technique by optimizing donor cell and recipient oocyte preparations. Theriogenology 59, 1949–57.CrossRefGoogle ScholarPubMed
Lee, G.S., Kim, H.S., Hyun, S.H., Kim, D.Y., Lee, S.H., Nam, D.H., Jeong, Y.W., Kim, S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2003b). Improved developmental competence of cloned porcine embryos with different energy supplements and chemical activation. Mol. Reprod. Dev. 66, 1723.CrossRefGoogle ScholarPubMed
Matas, C., Coy, P., Romar, R., Marco, M., Gadea, J. & Ruiz, S. (2003). Effect of sperm preparation method on in vitro fertilization in pigs. Reproduction 125, 133–41.CrossRefGoogle ScholarPubMed
Mateusen, B., Soom, A.V., Maes, D.G.D., Donnay, I., Duchateau, L. & Lequarre, A.S. (2005). Porcine embryo development and fragmentation and their relation to apoptotic markers: a cinematographic and confocal laser scanning microscopic study. Reproduction 129, 443–52.CrossRefGoogle ScholarPubMed
Medvedev, S., Onishi, A., Fuchimoto, D., Iwamoto, M. & Nagai, T. (2004). Advanced in vitro production of pig blastocysts obtained through determining the time for glucose supplementation. J. Reprod. Dev. 50, 71–6.CrossRefGoogle ScholarPubMed
Moussa, M., Tremoleda, J.L., Duchamp, G., Bruyas, J.F., Colenbrander, B., Bevers, M.M. & Daels, P.F. (2004). Evaluation of viability and apoptosis in horse embryos stored under different conditions at 5 °C. Theriogenology 61, 921–32.CrossRefGoogle Scholar
Olson, S.E. & Seidel, G.E. Jr. (2000). Reduced oxygen tension and EDTA improve bovine zygote development in chemically efined medium. J. Anim. Sci. 78, 152–7.CrossRefGoogle Scholar
Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H. & Perry, A.C.F. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–90.CrossRefGoogle ScholarPubMed
Park, J.I., Hong, J.Y., Yong, H.Y., Hwang, W.S., Lim, J.M. & Lee, E.S. (2005). High oxygen tension during in vitro oocyte maturation improves in vitro development of porcine oocytes after fertilization. Anim. Reprod. Sci. 87, 133–41.CrossRefGoogle ScholarPubMed
Park, K.W., Lai, L., Cheong, H.T., Im, G.S., Sun, Q.Y., Wu, G., Day, B.N. & Prather, R.S. (2001). Developmental potential of porcine nuclear transfer embryos derived from transgenic fetal fibroblasts infected with the gene for the green fluorescent protein: comparison of different fusion/activation conditions. Biol. Reprod. 65, 1681–5.CrossRefGoogle ScholarPubMed
Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D.L., Colman, A. & Campbell, K.H.S. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 8690.CrossRefGoogle ScholarPubMed
Pomar, F.J., Teerds, K.J., Kidson, A., Colenbrander, B., Tharasanit, T., Aguilar, B. & Roelen, B.A. (2005). Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study. Theriogenology 63, 2254–68.CrossRefGoogle ScholarPubMed
Prather, R.S. (2000). Pigs is pigs. Science 289, 1886–7.CrossRefGoogle ScholarPubMed
Rizos, D., Ward, F., Duffy, P., Boland, M.P. & Lonergan, P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–48.CrossRefGoogle ScholarPubMed
Seshagiri, P.B. & Bavister, B.D. (1989). Glucose inhibits development of hamster 8-cell embryos in vitro. Biol. Reprod. 40, 599606.CrossRefGoogle ScholarPubMed
Swain, J.E., Bormann, C.L., Clark, S.G., Walters, E.M., Wheeler, M.B. & Krisher, R.L. (2002). Use of energy substrates by various stage preimplantation pig embryos produced in vivo and in vitro. Reproduction 123, 253–60.CrossRefGoogle ScholarPubMed
Yoshida, M., Mizoguchi, Y., Ishiaki, K., Kojima, T. & Nagai, T. (1993). Birth of piglets derived from in vitro fertilization of pig oocytes matured in vitro. Theriogenology 39, 1303–11.CrossRefGoogle Scholar