Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T02:46:07.590Z Has data issue: false hasContentIssue false

Cryoprotectant agents and cooling effect on embryos of Macrobrachium amazonicum

Published online by Cambridge University Press:  15 April 2018

Caroline Costa Lucas*
Affiliation:
Department of Biology, State University of Ceará, UECE, Fortaleza, CE, 60740-000, Brazil.
Luana Rolim Melo
Affiliation:
Postgraduate Program in Veterinary Science, UECE, Fortaleza, CE, Brazil.
Míriam Luzia Nogueira Martins de Sousa
Affiliation:
Postgraduate Program in Veterinary Science, UECE, Fortaleza, CE, Brazil.
Glayciane Bezerra de Morais
Affiliation:
Postgraduate Program in Veterinary Science, UECE, Fortaleza, CE, Brazil.
Moisés Fernandes Martins
Affiliation:
Department of Biology, State University of Ceará, UECE, Fortaleza, CE, Brazil.
Francisco Antônio Félix Xavier Junior
Affiliation:
Department of Medicine Veterinary, State University of Ceará, UECE, Fortaleza, CE, Brazil.
Janaina Serra Azul Monteiro Evangelista
Affiliation:
Department of Medicine Veterinary, State University of Ceará, UECE, Fortaleza, CE, Brazil.
Célia Maria de Souza Sampaio
Affiliation:
Department of Biology, State University of Ceará, UECE, Fortaleza, CE, Brazil.
*
All correspondence to: Caroline Costa Lucas. Department of Biology, State University of Ceará, UECE, Fortaleza, CE, 60740-000, Brazil. Tel:/Fax: +85 3101 9927. E-mail: [email protected]

Summary

There are few reports of cryopreservation and injuries in Macrobrachium amazonicum embryos. Thus, the aim of this study was to analyze the effects of cryoprotectants agents and cooling on stage VIII of this species. Fertilized eggs from ovigerous females were removed from the incubation chamber, then placed in 10 ml Falcon tubes with a cryoprotectant solution and saline-free calcium solution. Thus, the embryos underwent a cooling curve of 1°C per min until reaching 5°C, and then were stored for 2 h. The tubes containing the embryos were washed to remove the cryoprotectant, acclimated for 5 min and then transferred to 50 ml incubators. At the end of the 24-h period, living embryos from each tube were counted and tabulated. A pool of embryos was fixed with 4% formaldehyde and then subjected to histology using 3-mm thick sections and stained with haematoxylin/eosin. Another pool was used for biometric analysis in which length, width and volume were analyzed. The cryoprotectants agents used were: dimethylsulfoxide (DMSO), methyl alcohol, ethylene glycol at 1, 5 and 10% and sucrose (0.5 M). Variance analysis was performed followed by Tukey's honest significant difference (HSD) test at 5% significance level. DMSO cryoprotectant affected embryo survival the least with rates of 71.8, 36.2 and 0% for concentrations of 1, 5 and 10%, respectively. Ethylene glycol caused 100% mortality at all the concentrations used. It was not possible to observe the interference of cooling and cryoprotectants on embryonic structures in this study.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baust, J.G. & Lawrence, A.L. (1977). Rapid freezing: an essential criterion for the successful cryopreservation of immature larval shrimp. Cryobiology 14, 705.Google Scholar
Bedore, A.G. (1999). Características e criopreservação do sêmen de pacu-aranha (Piaractus mesopotamicus) e de piracanjuba (Brycon orbignyanus), 53 pp. Dissertação (mestrado em biologia celular), Universidade Federal de Minas Gerais, Belo Horizonte.Google Scholar
Berthelot, F., Venturi, E., Cognie, J., Furstoss, V. & Botte, F.M. (2007). Development of ops vitrified pig blastocysts: effects of size of the collected blastocysts, cryoprotectant concentration used for vitrification and number of blastocysts transferred. Theriogenology 68, 178–85.CrossRefGoogle ScholarPubMed
Bettencourt, E.M.V., Bettencourt, C.M., Silva, J.N.C.E., Ferreira, P., Matos, C.P., Oliveira, E., Romão, R.J., Rocha, A. & Sousa, M. (2009). Ultrastructural characterization of fresh and cryopreserved in vivo produced ovine embryos. Theriogenology 71, 947–58.Google Scholar
Cuello, C., Gil, M.A., Alminana, C., Sanchez-Osorio, J., Parrilla, J., Caballero, I., Vazquez, J.M., Roca, J., Rodriguez-Martinez, H. & Martinez, E.A. (2007). Vitrification of in vitro cultured porcine two-to-four cell embryos. Theriogenology 68, 258–64.CrossRefGoogle ScholarPubMed
Ferreira, A.V.L., Castro, E.J.T., Barbosa, M.S.A., Sousa, M.L.N.M., Paiva, M.A.N., Filho, A.A.S. & Sampaio, C.M.S. (2015).Toxicity of cryoprotectants agents in freshwater prawn embryos of Macrobrachium amazonicum. Zygote 23, 813–20.Google Scholar
Friedler, S., Giudice, L.C. & Lamb, E.J. (1988). Cryopreservation of embryos and ova. Fertil. Steril. 49, 743–64.Google Scholar
Galo, J.M., Streit-Junior, D.P., Sirol, R.N., Ribeiro, R.P., Digmayer, M., Andrade, V.X.L. & Ebert, A.R. (2011).Spermatic abnormalities of piracanjuba Brycon orbignyanus (Valenciennes, 1849) after cryopreservation. Braz. J. Biol. 71, 693–9.Google Scholar
Garcia-Garcia, M.R., Gonzalez-Bulnes, A., Dominguez, V., Veiga-Lopes, A. & Cocero, M.J. (2006). Survival of frozen–thawed sheep embryos cryopreserved at cleavage stages. Cryobiology 55, 108–13.Google Scholar
Goldberg, R.S., Albuquerque, F.T. & Oshiro, L.M.Y. (2000). Criopreservação de Material Genético do Camarão-de-Água-Doce Macrobrachium rosenbergii. Rev. Bras. Zootec. 29, 2157–61.Google Scholar
Guignot, F., Bouttier, A., Baril, G., Salvetti, P., Pignon, P., Beckers, J.F., Touze, J.L., Cognie, J., Traldi, A.S., Cognie, Y. & Mermillod, P. (2006). Improved vitrification method allowing direct transfer of goat embryos. Theriogenology 66, 1004–11.Google Scholar
Hapletoft, R.J. (1984). Embryo transfer technology for the enhancement of animal reproduction. Biotechnology 2, 149–60.Google Scholar
Hubálek, Z. 2003. Protectants used in the cryopreservation of microorganisms. Cryobiology 46, 205–29.Google Scholar
Kaidi, S., Van Langendonckt, A., Massip, A., Dessy, F. & Donnay, I. (1999). Cellular alteration after dilution of cryoprotective solutions used for the vitrification of in vitro-produced bovine embryos. Theriogenology 52, 515–25.Google Scholar
Landim-Alvarenga, F.C. (1995). Avaliação dos efeitos do congelamento e descongelamento sobre a viabilidade e morfologia de embriões eqüinos, 102 pp. Tese (Doutorado – Instituto de Biociências, Universidade Estadual Paulista, Botucatu).Google Scholar
Leiboo, S.P. (1986). Cryobiology: preservation of mammalian embryos. In Evans, J.U. & Hollaender, A. (eds), Genetic Engineering of Animals, pp. 251–72. New York, Plenum Publishing Corporation.Google Scholar
Leibo, S.P. (2008). Cryopreservation of oocytes and embryos: optimization by theoretical versus empirical analysis. Theriogenology 69, 3747.Google Scholar
Lobão, V.L. & Rojas, N.E.T. (1991). Camarões de água doce. Da coleta ao cultivo, à comercialização. São Paulo, Ícone, 112 pp.Google Scholar
Martinez, A.G., Valcárcel, A., Heras, M.A., Matos, D.G., Furnus, C. & Brogliatti, G. (2002). Vitrification of in vitro produced bovine embryos: in vitro and in vivo evaluations. Anim Reprod. Sci. 73, 1121.Google Scholar
Mazur, P. (1984). Freezing of living cells: mechanisms and implications. Am. J. Physiol. Cell. Physiol. 247, 125–42.Google Scholar
Moraes-Riodades, P.M.C. & Valenti, W.C. (2001). Freshwater prawn farming in Brazilian Amazonia shows potential for economic and social development. Global Aquaculture Advocate 4, 73–4.Google Scholar
Mucci, N., Aller, J., Kaiser, G.G., Hozbor, F., Cabodevila, J. & Alberio, R.H. (2006). Effect of estrous cow serum during bovine embryo culture on blastocyst development and cryotolerance after slow freezing or vitrification. Theriogenology 65, 1551–62.Google Scholar
Pereira, R.M. & Marques, C.C. (2008). Animal oocyte and embryo cryopreservation. Cell Tissue Bank 9, 267– 77.Google Scholar
Preston, N.P. & Coman, F.E. (1998).The effects of cryoprotectants, chilling and freezing on Penaeus esculentus embryos and nauplii. In Flegel, T.W. (ed.), Advances in Shrimp Biotechnology, pp. 3743. National Center for Genetic Engineering and Biotechnology, Bangkok.Google Scholar
Purdy, P.H. (2006). A review on goat sperm cryopreservation. Small Rumin. Res. 63, 215–25.Google Scholar
Sansone, G., Nascimento, I.A. & Leite, M.B.N.L. (2005). Toxic effects of cryoprotectants on oyster gametes and embryos: a preliminary step towards establishing cryopreservation protocols. Biociências 13, 11–8.Google Scholar
Schneider, U. & Mazur, P. (1986). Implications and applications of the long-term preservation of embryos by freezing. In Morrow, D. (ed.), Current Therapy in Theriogenology II, pp. 81–3. Philadelphia, W.B. Saunders.Google Scholar
Sommerfeld, V. & Niemann, H. (1999). Cryopreservation of bovine in vitro produced embryos using ethylene glycol in controlled freezing or vitrification. Cryobiology 38, 95105.Google Scholar
Streit-Junior, D.P., Oliveira, A.C., Ribeiro, R.P., Sirol, R.N., Moraes, G.V., Galo, J.M. & Digmayer, M. (2009). Motilidade, vigor e patologias seminal in natura e pós criopreservação de Piaractus mesopotamicus. B Inst. Pesca. 35, 159–67.Google Scholar
Tiersch, T.R & Green, C.C. (2011). Cryopreservation in Aquatic Species, 2nd edn. Louisiana, World Aquaculture Society, 1003 pp.Google Scholar
Trounson, A. (1986). Preservation of human eggs and embryos. Fertil. Steril. 46, 112.Google Scholar
Uberti, M.F. (2012). Avaliação das células espermáticas de Litopenaeus vannamei submetidas a criopreservação. Dissertação de Mestrado. Florianopólis: Universidade Federal de Santa Catarina, 53 pp.Google Scholar
Vajta, G. & Nagy, Z.P. (2006). Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod. Biomed. Online 12, 779–96.Google Scholar
Vajta, G. & Kuwayama, M. (2006). Improving cryopreservation systems. Theriogenology 65, 236–44.Google Scholar
Vigoya, A.A.A. (2012). Desenvolvimento embrionário do camarão-da-Amazônia Macrobrachium amazonicum (Heller, 1862) (Crustacea, Decapoda, Palaemonidae). Dissertação de Mestrado. Jaboticabal: UNESP, Universidade Estadual Paulista, 112 pp.Google Scholar
Vuthiphandchai, V., Pengpun, B. & Nimrat, S. (2005). Effect of cryoprotectant toxicity and temperature sensitivity on the embryos of black tiger shrimp (Penaeus monodon). Aquaculture 246, 275–84.Google Scholar
Vuthiphandchai, V., Nimrat, S., Kotcharat, S. & Bart, A.N. (2007). Development of a cryopreservation protocol for long-term storage of black tiger shrimp (Penaeus monodon) spermatophores. Theriogenology 68, 1192–9.Google Scholar
Woods, E.J., Benson, J.D., Agca, Y. & Critser, J.K.(2004). Fundamental cryobiology of reproductive cells and tissues. Cryobiology 48, 146–56.Google Scholar
Yao, J., Zhao, Y.L., Wang, Q., Zhou, Z.L., Hu, X.C., Duan, X.W. & Anchuan, G. (2006).Biochemical compositions and digestive enzyme activities during the embryonic development of prawn, M. rosenbergii. Aquaculture 253, 573–82.Google Scholar
Yavin, S. & Arav, A. (2007). Measurement of essential physical properties of vitrification solutions. Theriogenology 67, 81–9.Google Scholar
Zeron, Y., Pearl, M., Borochov, A. & Arav, A. (1999). Kinetic and temporal factors influence chilling injury to germinal vesicle and mature bovine oocytes. Cryobiology 38, 3542.Google Scholar