Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T04:02:29.476Z Has data issue: false hasContentIssue false

Connexin 43 expression in the testis of the frog Rana esculenta

Published online by Cambridge University Press:  01 November 2006

G. Izzo
Affiliation:
Dipartimento di Medicina Sperimentale–Seconda Università di Napoli, Napoli, Italy.
M. d'Istria
Affiliation:
Dipartimento di Medicina Sperimentale–Seconda Università di Napoli, Napoli, Italy.
D. Ferrara
Affiliation:
Dipartimento di Medicina Sperimentale–Seconda Università di Napoli, Napoli, Italy.
I. Serino
Affiliation:
Dipartimento di Medicina Sperimentale–Seconda Università di Napoli, Napoli, Italy.
F. Aniello
Affiliation:
Dipartimento di Biologia Strutturale e Funzionale–Università di Napoli ‘Federico II’, Napoli, Italy.
S. Minucci*
Affiliation:
Dipartimento di Medicina Sperimentale–Seconda Università di Napoli, Napoli, Italy.
*
All correspondence to: S. Minucci. Dipartimento di Medicina Sperimentale, Seconda Università degli Studi di Napoli, Via Costantinopoli 16, 80138 Naples, Italy. Tel: +39 81 5665829. Fax: +39 81 5667536. e-mail: [email protected]

Summary

Testicular cell-to-cell interactions play a key role in the regulation of spermatogenesis. In the testis, cell contacts are mediated through several mechanisms, including paracrine and direct contacts depending on gap junctional pathways. Gap junctions require connexin (Cx) channels and connexin-43 (Cx43) represent the most abundant Cx found in mammalian testis. Little is known about Cx expression in non-mammalian testis. Here we report the partial cloning of a Cx43 transcript of 381 bp from Rana esculenta testis. We also demonstrate that, in the frog testis, Cx43 transcript and protein show a parallel temporal and spatial pattern of expression throughout the reproductive annual cycle, with higher levels from September to January (when spermatogenesis is at a maximum level). In situ hybridization, carried out on testis collected in October, indicated that Leydig cells (LC) and Sertoli cells express Cx43 transcript, while the hybridization signal was less intense in germ cells. To obtain more information on Cx43 expression in the frog testis, we have used ethane-dimethane sulphonate (EDS), a toxin that specifically destroys LC. RT-PCR analysis shows a progressive decrease in Cx43 expression in EDS-treated testis from day 1 to day 4 after the injection, associated with LC destruction. Moreover, Cx43 expression returns to normal on day 28, when a new population of LC reappear in the interstitium, indicating that Cx43 is mainly expressed by LC. Taken together our data provide evidence that Cx43 is present in the frog testis with an important role in spermatogenesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batias, C., Defamie, N., Lablack, A., Thepot, D., Fenichel, P., Segretain, D., Pointis, G. (1999). Modified expression of testicular gap-junction connexin 43 during normal spermatogenic cycle and in altered spermatogenesis. Cell. Tissue Res. 298, 113–21.CrossRefGoogle ScholarPubMed
Batias, C., Siffroi, J.P., Fenichel, P., Pointis, G. & Segretain, D. (2000). Connexin43 gene expression and regulation in the rodent seminiferous epithelium. J. Histochem. Cytochem. 48, 793805.CrossRefGoogle ScholarPubMed
Batlouni, S.R., Carreno, F.R., Romagosa, E. & Borella, M.I. (2005). Cell junctions in the germinal epithelium may play an important role in spermatogenesis of the catfish P. fasciatum (Pisces, Siluriformes). J. Mol. Histol. 36, 97110.CrossRefGoogle ScholarPubMed
Beyer, E.C., Paul, D.L. & Goodenough, D.A. (1990). Connexin family of gap junction proteins. J. Membr. Biol. 116, 187–94.CrossRefGoogle ScholarPubMed
Bruzzone, R., White, T.W. & Paul, D.L. (1996). Connections with connexins: the molecular basis of direct intercellular signalling. Eur. J. Biochem. 238, 127.CrossRefGoogle Scholar
Chomczynski, P. & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156–9.CrossRefGoogle ScholarPubMed
Chun, N.B. & Cheng, C.Y. (2001). Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142, 1878–88.CrossRefGoogle Scholar
Decrouy, X., Gasc, J.M., Pointis, G. & Segretain, D. (2004). Functional characterization of Cx43 based gap junctions during spermatogenesis. J. Cell. Physiol. 200, 146–54.CrossRefGoogle ScholarPubMed
Gilula, N.B., Fawcett, D.W. & Aoki, A. (1976). The Sertoli cell occluding junctions and gap junctions in mature and developing mammalian testis. Dev. Biol. 50, 142–68.CrossRefGoogle ScholarPubMed
Griswold, M.D. (1998). The central role of Sertoli cells in spermatogenesis. Semin. Cell. Dev. Biol. 9, 411–6.CrossRefGoogle ScholarPubMed
Haefliger, J.A., Bruzzone, R., Jenkins, N.A., Gilbert, D.J., Copeland, N.G. & Paul, D.L. (1992). Four novel members of the connexin family of gap junction proteins. Molecular cloning, expression and chromosome mapping. J. Biol. Chem. 267, 2057–64.CrossRefGoogle ScholarPubMed
Herve, J.C., Pluciennik, F., Bastide, B., Cronier, L., Verrecchia, F., Malassine, A., Joffre, M. & Deleze, J. (1996). Contraceptive gossypol blocks cell-to-cell communication in human and rat cells. Eur. J. Pharmacol. 313, 243–55.CrossRefGoogle ScholarPubMed
Jegou, B. (1992). The Sertoli cell in vivo and in vitro. Cell. Biol. Toxicol. 8, 4954.CrossRefGoogle Scholar
Juneja, S.C., Barr, K.J., Enders, G.C. & Kidder, G.M. (1999). Defects in the germ line and gonads of mice lacking connexin43. Biol. Reprod. 60, 1263–70.CrossRefGoogle ScholarPubMed
Kadle, R., Zhang, J.T. & Nicholson, B.J. (1991). Tissue-specific distribution of differentially phosphorylated forms of Cx43. Mol. Cell. Biol. 11, 363–9.Google ScholarPubMed
Kumar, N.M. & Gilula, N.B. (1996). The gap junction communication channel. Cell 84, 381–8.CrossRefGoogle ScholarPubMed
McGinley, D., Posalaky, M. & Provaznik, M. (1977). Intercellular junctional complexes of the rat seminiferous tubules: a freeze-fracture study. Anat. Rec. 189, 211–31.CrossRefGoogle ScholarPubMed
Minucci, S., De Rienzo, G., Di Sena, R., Cobellis, G., Meccariello, R., Pierantoni, R. & Fasano, S. (2000). Effects of multiple injections of ethane 1,2-dimethane sulphonate (EDS) on the frog, Rana esculenta, testicular activity. J. Exp. Zool. 287, 384–93.3.0.CO;2-I>CrossRefGoogle Scholar
Minucci, S., Fasano, S. & Pierantoni, R. (1992). The use of EDS in the investigation of the testicular activity in vertebrates. In Advances in Comparative Endocrinology, vol. 1 (ed. J.C. Alexander), pp. 117125. Bangalore–Varanasi–Texas: Compilers International.Google Scholar
Nagano, T. & Suzuky, F. (1980). Belt-like gap junctions in the ductuli efferentes of some mammalian testes. Arch. Histol. Jpn 43, 185–9.CrossRefGoogle ScholarPubMed
Palmiero, C., Ferrara, D., De Rienzo, G., d'Istria, M. & Minucci, S. (2003). Ethane 1,2-dimethane sulphonate is a useful tool for studying cell-to-cell interactions in the testis of the frog, Rana esculenta. Gen. Comp. Endocrinol. 131, 3847.CrossRefGoogle Scholar
Pelletier, R.M. (1995). The distribution of connexin43 is associated with the germ cell differentiation and with the modulation of the Sertoli cell junctional barrier in continual (guinea pig) and seasonal breeders’ (mink) testes. J. Androl. 16, 400–9.CrossRefGoogle ScholarPubMed
Perez-Armendariz, E.M., Lamoyi, E., Mason, J.I., Cisneros-Armas, D., Luu-The, V. & Bravo Moreno, J.F. (2001). Developmental regulation of connexin43 expression in fetal mouse testicular cells. Anat. Rec. 264, 237–46.CrossRefGoogle ScholarPubMed
Perez-Armendariz, E.M., Romano, M.C., Luna, J., Miranda, C., Bennett, M.V. & Moreno, A.P. (1994). Characterization of gap junctions between pairs of Leydig cells from mouse testis. Am. J. Physiol. 267, 570–80.CrossRefGoogle ScholarPubMed
Plum, A., Haalas, G., Magin, T., Dombowsky, F., Hagendoff, A., Shumacher, B., Wolpert, C., Kim, J., Lamers, W., Evert, M., Meda, P., Trau, O. & Willecke, K. (2000). Unique and shared functions of different connexin in mice. Curr. Biol. 10, 1083–91.CrossRefGoogle ScholarPubMed
Rastogi, R.K., Iela, L., Delrio, G., Di Meglio, M., Russo, A. & Chieffi, G. (1978). Environmental influence on testicular activity in the green frog, Rana esculenta. J. Exp. Zool. 206, 4964.CrossRefGoogle Scholar
Rastogi, R.K. & Iela, L. (1992). Spermatogenesis in amphibia: dynamics and regulation. In Sex origin and evolution, (ed. Dallai, R.), pp. 231–49 Mucchi, Modena, Italy.Google Scholar
Risley, M.S., Tan, I.P., Roy, C. & Saez, J.C. (1992). Cell-, age- and stage-dependent distribution of connexin43 gap junctions in testes. J. Cell. Sci. 103, 8196.CrossRefGoogle ScholarPubMed
Risley, M.S. (2000). Connexin gene expression in seminiferous tubules of the Sprague-Dawley rat. Biol. Reprod. 62, 748–54.CrossRefGoogle ScholarPubMed
Roscoe, W.A., Barr, K.J., Mhawi, A.A., Pomerantz, D.K. & Kidder, G.M. (2001). Failure of spermatogenesis in mice lacking connexin43. Biol. Reprod. 65, 829–38.CrossRefGoogle ScholarPubMed
Tan, I.P., Roy, C., Saez, J.C., Saez, C.G., Paul, D.L. & Risley, M.S. (1996). Regulated assembly of connexin33 and connexin43 into rat Sertoli cell gap junctions. Biol. Reprod. 54, 1300–10.CrossRefGoogle ScholarPubMed
Varriale, B., Pierantoni, R., Di Matteo, L., Minucci, S., Fasano, S., D'Antonio, M. & Chieffi, G. (1986). Plasma and testicular estradiol and plasma androgen profile in the male frog Rana esculenta during the annual cycle. Gen. Comp. Endocrinol. 64, 401–4.CrossRefGoogle ScholarPubMed
You, S., Li, W. & Lin, T. (2000). Expression and regulation of connexin43 in rat Leydig cells. J. Endocrinol. 166, 447–53.CrossRefGoogle ScholarPubMed