Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T21:16:00.576Z Has data issue: false hasContentIssue false

Comparison of method for activating mouse oocytes for spermatid nucleus tranfer

Published online by Cambridge University Press:  26 September 2008

Isoji Sasagawa*
Affiliation:
Department of Anatomy and Reproductive Biology, University of Hawaii School of Medicine, Hawaii, USA.
R. Yanagimachi
Affiliation:
Department of Anatomy and Reproductive Biology, University of Hawaii School of Medicine, Hawaii, USA.
*
Isoji Sasagawa, Department of Urology, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata-shi, Yamagata 990-23, Japan. Fax: +81-236-285370.

Summary

In the mouse, mature oocytes injected with prespermatozoal cell nuclei remain unactivated. Additional stimulation is needed to trigger oocyte activation leading to embryo development. We compared various electrical stimulations, treatment with cycloheximide alone or in combination with electrical stimulation, and injection of sperm-borne oocyte-activating factor (oscillogen) in terms of their oocyte activation and embryo development rates. Of all the treatments tested, a single electrical pulse (1.0 kV / cm, 128 μs) was the simplest, yet very effective, in allowing the development of the oocytes injected with spermatid nuclei.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refernces

Chatot, C.L., Ziomek, A., Bavister, B.D., Lewis, J.L. & Torres, I.. (1989). An improved culture medium supports development of random-bred 1-cell mouse embryo in vitro. J. Reprod. Fertil. 86, 679–88.CrossRefGoogle Scholar
Chatot, C.L., Lewis, J.L., Torres, I. & Ziomek, C.A.. (1990). Development of 1-cell embryos from different strains of mice in CZB medium. Biol. Reprod. 42, 432–40.CrossRefGoogle ScholarPubMed
Clarke, H.J. & Masui, Y.. (1983). The induction of reversible and irreversible chromosome decondensation by protein synthesis inhibition during meiotic maturation of mouse oocytes. Dev. Biol. 97, 291301.CrossRefGoogle ScholarPubMed
Collas, P., Balise, J.J., Hofmann, G.A. & Robl, J.M. (1989). Electrical activation of mouse oocytes. Theriogenology. 32, 679–88.CrossRefGoogle ScholarPubMed
Dale, B., De Felice, L.J. & Ehrenstein, G.. (1985). Injection of a soluble sperm extract into sea urchin eggs triggers the cortical reaction. Experientia 41, 1068–70.CrossRefGoogle Scholar
De Sutter, P., Dozortsev, D., Cieslak, J., Wolf, C., Verlinsky, Y. & Dyban, A.. (1992). Parthenogenetic activation of human oocytes by puromycin. J. Assist. Reprod. Genet. 9, 328–37.CrossRefGoogle ScholarPubMed
Fissore, R.A. & Robl, J.M. (1992). Intracellular Ca++ response of rabbit oocytes to electrical stimulation. Mol. Reprod. Dev. 32, 916.CrossRefGoogle Scholar
Gwatkin, R.B.L., Williams, D.T., Hartmann, J.F. & Kniazuk, M.. (1972). The zona reaction of hamster and mouse eggs: production in vitro by a trypsin-like protease from cortical granules. J. Reprod. Fertil. 32, 259–65.CrossRefGoogle Scholar
Homa, S.T. & Swann, K. (1994). A cytosolic sperm factor triggers calcium oscillations and membrane hyperpolarization in human oocytes. Hum. Reprod. 9, 2356–61.CrossRefGoogle ScholarPubMed
Jones, K.T., Carrol, J., Merriman, J.A., Whittingham, D.G & Kono, T. (1995). Repetitive sperm-induced Ca transients in mouse oocytes are cell cycle dependent. Development. 121, 3259–66.CrossRefGoogle Scholar
Kimura, Y. & Yanagimachi, R.. (1995a). Intracytoplasrnic sperm injection in the mouse. Biol. Reprod. 52, 709–20.CrossRefGoogle ScholarPubMed
Kimura, Y. & Yanagimachi, R.. (1995b). Mouse oocytes injected with testicular spermatozoa or round sperrnatids can develop into normal offspring. Development. 121, 2397–405.CrossRefGoogle ScholarPubMed
Kimura, Y. & Yanagimachi, R. (1995c). Development of normal mice from oocytes injected with secondary spermatocyte nuclei. Biol. Reprod. 53, 855–62.CrossRefGoogle ScholarPubMed
Kline, D.. (1996). Activation of the mouse egg. Theriogenology 45, 8190.CrossRefGoogle Scholar
Kline, J.T. & Kline, D.. (1994). Regulation of intracellular calcium in the mouse egg: evidence for inositol trisphosphate-induced calcium release, but not calcium-induced calcium release. Biol. Reprod. 50, 193203.CrossRefGoogle Scholar
Kubiak, J.Z., Weber, M., De Pennart, H., Winston, N.J. & Maro, B. (1993). The metaphase II arrest in mouse oocytes is controlled through microtubule-dependent destruction of cyclin B in the presence of CSF. EMBO J. 12, 3773–8.CrossRefGoogle ScholarPubMed
Moses, R.M. & Kline, D. (1995). Release of mouse eggs from metaphase arrest by protein synthesis inhibition in the absence of a calcium signal or microtubule assembly. Mol. Reprod. Dev. 41, 264–73.CrossRefGoogle ScholarPubMed
Nussbaum, D.J. & Prather, R.S. (1995). Differential effects of protein synthesis inhibitors on porcine oocyte activation. Mol. Reprod. Dev. 41, 70–5.CrossRefGoogle ScholarPubMed
Ogura, A., Matsuda, J. & Yanagimachi, R. (1994). Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc. Natl. Acad. Sci. USA 91, 7460–2.CrossRefGoogle ScholarPubMed
Onodera, M. & Tsunoda, Y. (1989). Parthenogenetic activation of mouse and rabbit eggs by electric stimulation in vitro. Gamete Res. 22, 277–8.CrossRefGoogle ScholarPubMed
Ozil, J.P.. (1990). The parthenogenetic development of rabbit oocytes after repetitive pulsatile electrical stimulation. Development 109, 117–27.CrossRefGoogle ScholarPubMed
Ozil, J.P. & Swarm, K.. (1995). Stimulation of repetitive calcium transients in mouse eggs. J. Physiol. (Lond.) 483, 331–46.CrossRefGoogle ScholarPubMed
Palermo, G.D., Cohen, J., Alikani, M., Adler, A. & Rosenwaks, Z. (1995). Intracytoplasmic sperm injection: a novel treatment for all forms of male factor infertility. Fertil. Steril. 63, 1231–40.CrossRefGoogle ScholarPubMed
Parrington, J., Swann, K., Shevchenko, V.I., Sesay, A.K. & Lai, F.A. (1996). Calcium oscillations in mammalian eggs triggered by a soluble sperm protein. Nature 379, 364–8.CrossRefGoogle ScholarPubMed
Presicce, G.A. & Yang, X. (1994). Nuclear dynamics of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 hours and activated with combined ethanol and cycloheximide treatment. Mol. Reprod. Dev. 37, 61–8.CrossRefGoogle ScholarPubMed
Siracusa, C., Whittingham, D.G., Molinaro, M. & Vivarelli, E. (1970). Parthenogenetic activation of mouse oocytes induced by inhibitors of protein synthesis. J. Embryol. Exp. Morphol. 43, 157–66.Google Scholar
Stice, S.L. & Robl, J.M. (1990). Activation of mammalian oocytes by a factor obtained from rabbit sperm. Mol. Reprod. Dev. 25, 272–80.CrossRefGoogle ScholarPubMed
Sun, F.Z., Hoyland, J., Huang, X., Mason, W. & Moor, R.M. (1992). A comparison of intracellular changes in porcine eggs after fertilization and electroactivation. Development 115, 947–56.CrossRefGoogle ScholarPubMed
Swann, K.. (1990). A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development 110, 1295–302.CrossRefGoogle ScholarPubMed
Swann, K.. (1993). The soluble sperm oscillogen hypothesis. Zygote. 1, 273–6.CrossRefGoogle ScholarPubMed
Swann, K.. (1996). Soluble sperm factors and Ca2+ release in eggs at fertilization. Rev. Reprod. 1, 33–9.CrossRefGoogle ScholarPubMed
Tarkowski, A.K., Witkowska, A. & Nowicka, J.. (1970). Experimental parthenogenesis in the mouse. Nature 226, 162–5.CrossRefGoogle ScholarPubMed
Tesarik, J., Mendoza, C. & Testart, J.. (1995). Viable embryos from injection of round spermatids into oocytes. N. Engl. J. Med. 333, 525.CrossRefGoogle ScholarPubMed
Van Steirtegham, A.C., Nagy, Z., Joris, H., Liu, J., Staessen, C., Smitz, J., Wisanto, A. & Devroey, P.. (1993). High fertilization and implantation rates after intracytoplasmic sperm injection. Hum. Reprod. 8, 1061–6.CrossRefGoogle Scholar
Vitullo, A.D. & Ozil, J.P. (1992). Repetitive calcium stimuli drive meiotic resumption and pronuclear development during mouse oocyte activation. Dev. Biol. 151, 128–36.CrossRefGoogle ScholarPubMed
Zimmermann, U. & Vienken, J. (1982). Electric field induced cell-to-fusion. J. Membr. Biol. 67, 165–82.CrossRefGoogle Scholar