Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T23:55:28.773Z Has data issue: false hasContentIssue false

Comparative glucose and fructose incorporation and conversion by in vitro Produced bovine embryos

Published online by Cambridge University Press:  26 September 2008

Catherine Guyader-Joly*
Affiliation:
UNCEIA, Chateauvillain; INRA, Jouy-en-Josas; and INSA, Villeurbanne, France.
Chaqué Khatchadourian
Affiliation:
UNCEIA, Chateauvillain; INRA, Jouy-en-Josas; and INSA, Villeurbanne, France.
Yves Ménézo
Affiliation:
UNCEIA, Chateauvillain; INRA, Jouy-en-Josas; and INSA, Villeurbanne, France.
*
Y. Ménézo, INSA, Unité de Biologie du développement préimplantaioire, Laboratoire de Biologie Appliquée, Bâtiment 406, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex, France. Telephone: +33/72 43 83 39. Fax: +33/72 43 85 11.

Summary

We have investigated the quality of bovine IVM/IVF embryos co-cultured on Vero cells. Blastocyst cell numbers are very similar to those obtained in vivo, and higher than those obtained by co-culture with oviduct cells. The metabolism and conversion of fructose and glucose are not equivalent even though carbon dioxide production is similar and increasing from morula to blastocyst. Formation of free amino acids and incorporation into proteins are higher and faster for glucose than for fructose, but this conversion is rather stable with embryonic growth. Moreover, the by-products formed are not the same. Glucose at physiological concentrations (i.e.2 mM)seems to be a more appropriate fuel for the burst of embryonic development at the blastocyst stage in preparation for hatching.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, J., Whitten, W.K. & Shelton, J.N. (1993). Effect of culture systems on mouse early embryo development. Hum. Reprod. 8, 1110–14.CrossRefGoogle ScholarPubMed
Flynn, T.J. & Hillman, N. (1978). Lipid synthesis from U-14Clglucose in preimplantation mouse embryos in culture. Biol. Reprod. 19, 922–6.CrossRefGoogle ScholarPubMed
Hasler, J.F., Henderson, W.B., Hurtgen, P.J., Jin, Z.Q., McCauley, A.D., Mower, S.A., Neely, B., Shuey, L.S., Stokes, J.E. & Trimmer, S.A., (1995). Production, freezing and transfer of bovine IVF embryos and subsequent calving results. Theriogenology 43, 141–52.CrossRefGoogle Scholar
Heyman, Y., Degrolard, J., Adenot, P., Chesné, P., Fléchon, B., Renard, J.P. & Fléchon, J.E. (1995). Cellular evalution of bovine nuclear transfer embryos developed in vitro. Reprod. Nutr. Dev. 35. 713–23.CrossRefGoogle Scholar
Khatchadourian, C.J., Ménézo, Y.J.R., Sakkas, D. & Renard, J.P. (1994). Incorporation of fructose by the mouse embryo: effect on preimplantation development. Theriogenology 42, 1349–56.CrossRefGoogle Scholar
Khurana, N.K. & Wales, R.G. (1987). Effects of coculture with epithelial cells on the metabolism of glucose by mouse morula and early blastocysts. Aust. J. Biol. Sci. 40, 389–95.CrossRefGoogle Scholar
Ménézo, Y. & Khatchadourian, C. (1990). Implication de l'activité glucose 6 phosphate isomérase (EC 5.3.1.9) dans l'arrêt de la segmentation de l'oeuf de souris au stade 2 cellues in vitro. CR. Acad. Sci. Paris, Ser. III. 310, 297301.Google Scholar
Ménézo, Y., Renard, J.P., Delobel, B. & Pageaux, J.F. (1982). Kinetic study of fatty acid composition of D7 to D14 cow embryos. Biol. Reprod. 26, 787–90.CrossRefGoogle Scholar
Ménézo, Y., Guérin, J.F. & Czyba, J.C. (1990). Improvement of human early embryo development in vitro by co-culture on monolayers of Vero cells. Biol. Reprod. 42, 301–6.CrossRefGoogle Scholar
Ouhibi, N., Hamidi, J., Guillaud, J. & Ménézo, Y. (1990). Coculture of 1-cell mouse embryos on differnt cell supports. Hum. Reprod. 5, 737–43.CrossRefGoogle Scholar
Quinn, P. (1995). Enhanced results in mouse and human embryo culture using a modified human tubal fluid medium lacking glucose and phosphate. J. Assisted Reprod. Genet. 12, 97105.CrossRefGoogle Scholar
Renard, J.P., Phillipon, A. & Ménézo, Y. (1980). In vitro uptake by bovine blastocysts. J. Reprod. Fertil. 58, 161–4.CrossRefGoogle ScholarPubMed
Rieger, D. & Guay, P. (1988). Measurement of the metabolism ofenergy substrates in individual bovine blastocysts. J. Reprod. Fertil. 83, 585–91.CrossRefGoogle Scholar
Rieger, D., Loskutoff, N.M. & Betteridge, K.J. (1992). Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod. Fertil Dev. 4, 547–57.CrossRefGoogle ScholarPubMed
Rieger, D., Grisart, B., Semple, E., Van Langendonckt, A., Betteridge, K.J. & Dessy, F. (1995). Comparison of the effects of oviductal cell co-culture and oviductal cell-conditioned medium on the development and metabolic activity of cattle embryos. j. Reprod. Fertil. 105, 91–8.CrossRefGoogle ScholarPubMed
Schini, S.A. & Bavister, B.D. (1988). Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39, 1183–92.CrossRefGoogle ScholarPubMed
Tiffin, G.J., Rieger, D., Betteridge, K.J., Yadav, B.R. & King, W.A. (1992). Glucose and glutamine metabolism in preattachment cattle embryos in relation to sex and stage of development. J. Reprod. Fertil. 93, 125–32.CrossRefGoogle Scholar
Tsutsumi, O., Yano, T., Satoh, K., Mizuno, M. & Kato, T. (1990). Studies of hexokinase activity in human and mouse oocyte. Am J. Obstet. Gynecol. 162, 1301–4.CrossRefGoogle ScholarPubMed
Xu, K.P., Yadav, B.R., Rorie, R.W., Plante, L., Bettridge, K.J. & King, W.A. (1992). Development and viability of bovine embryos derived from oocytes matured and fertilized in vitro and co-cultured with bovine oviductal epithelial cells. J. Reprod. Fertil. 94, 3343.CrossRefGoogle Scholar
Wales, R.G. (1973). The uterus of the ewe. II. Chemical analysis of uterine fluid collected by canulation. Aust. J. Biol Sci. 26, 947–59.CrossRefGoogle Scholar