Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T05:02:28.711Z Has data issue: false hasContentIssue false

Attempts at in vitro fertilization and culture of in vitro matured oocytes in sei (Balaenoptera borealis) and Bryde's (B. edeni) whales

Published online by Cambridge University Press:  01 February 2009

M. M. U. Bhuiyan
Affiliation:
Laboratory of Animal Reproduction, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080–8555 Hokkaido, Japan.
Y. Suzuki
Affiliation:
Laboratory of Animal Reproduction, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080–8555 Hokkaido, Japan.
H. Watanabe
Affiliation:
Laboratory of Animal Reproduction, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080–8555 Hokkaido, Japan.
K. Matsuoka
Affiliation:
Institute of Cetacean Research, Tokyo 104–0055, Japan.
Y. Fujise
Affiliation:
Institute of Cetacean Research, Tokyo 104–0055, Japan.
H. Ishikawa
Affiliation:
Institute of Cetacean Research, Tokyo 104–0055, Japan.
S. Ohsumi
Affiliation:
Institute of Cetacean Research, Tokyo 104–0055, Japan.
Y. Fukui*
Affiliation:
Laboratory of Animal Reproduction, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080–8555 Hokkaido, Japan. Laboratory of Animal Reproduction, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080–8555 Hokkaido, Japan.
*
All correspondence to: Yutaka Fukui. Laboratory of Animal Reproduction, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080–8555 Hokkaido, Japan. Tel: +81 155 49 5415. Fax: +81 155 49 5593. e-mail: [email protected]

Summary

The cumulus–oocyte–complexes (COCs) recovery rates with respect to reproductive status per sei (Balaenoptera borealis) and Bryde's (B. edeni) whales were determined in Experiment 1. The number of COCs recovered ranged from 16.0 to 30.6 and from 6.7 to 26.8 per sei and Bryde's whales, respectively. The effects of COCs grades and protein supplementation in embryo culture medium on development of in vitro fertilized (IVF) embryos were evaluated in sei and Bryde's whales in Experiment 2. The COCs were classified into either Grade A (COCs with five or more layers of compact cumulus cells) or Grade B (COCs with less than five layers of compact or expanded cumulus cells) before being cultured for IVM. The cleavage (12.0 to 19.5%), 4-cell (8.0 to 12.0%) and 8-cell (4.0 to 8.0%) formation rates in sei whales did not vary significantly between embryos derived from either grade A or B oocytes and between embryos cultured in either fetal whale serum (FWS)- or bovine serum albumin (BSA)-supplemented medium. The cleavage (4.0 to 14.8%), 4-cell (0.0 to 7.5%) and 8-cell (0.0 to 2.6%) formation rates in Bryde's whales did not vary significantly between embryos derived from either grade A or B oocytes and between embryos cultured in either FWS- or BSA-supplemented medium. The grade B oocytes cultured in FWS-supplemented medium developed to morula stage (1.1%) in sei whales. In conclusion, the present study indicates that IVF in sei whales is possible to achieve cleaved embryos developing to morula stage. This is the first in vitro embryo production attempt in sei and Bryde's whales.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, A., Coenen, K., Bousequet, D. & Sirard, M.A. (2004). Origin of bovine follicular fluid and its effect during in vitro maturation on the developmental competence of bovine oocytes. Theriogenology 62, 1596–606.CrossRefGoogle ScholarPubMed
Asada, M., Horii, M., Mogoe, T., Fukui, Y., Ishikawa, H. & Ohsumi, S. (2000). In vitro maturation and ultrastructural observation of cryopreserved minke whale (Balaenoptera acutorostrata) follicular oocytes. Biol. Reprod. 62, 253–9.Google Scholar
Asada, M., Tetsuka, M., Ishikawa, H., Ohsumi, S. & Fukui, Y. (2001a). Improvement on in vitro maturation, fertilization and development of minke whale (Balaenoptera acutorostrata) oocytes. Theriogenology 56, 521–33.CrossRefGoogle ScholarPubMed
Asada, M., Wei, H., Nagayama, R., Tetsuka, M., Ishikawa, H., Ohsumi, S. & Fukui, Y. (2001b). An attempt at intracytoplasmic sperm injection of frozen-thawed minke whale (Balaenoptera bonaerensis) oocytes. Zygote 9, 299307.CrossRefGoogle ScholarPubMed
Bavister, B.D. (1995). Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91148.CrossRefGoogle Scholar
Beckmann, L.S. & Day, B.N. (1993). Effects of media NaCl concentration and osmolarity on the culture of early-stage porcine embryos and the viability of embryos cultured in a selected superior medium. Theriogenology 39, 611–22.CrossRefGoogle Scholar
Bhuiyan, M.M.U., Cho, J.K., Jang, G., Park, E.S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2004). Effect of protein supplementation in potassium simplex optimization medium on preimplantation development of bovine non-transgenic and transgenic cloned embryos. Theriogenology 62, 1403–16.Google Scholar
Biggers, J.D., Lawitts, J.A. & Lechene, C.P. (1993). The protective action of betaine on the deleterious effects of NaCl on preimplantation mouse embryos in vitro. Mol. Reprod. Dev. 34, 380–90.CrossRefGoogle ScholarPubMed
Chang, S.C., Jones, J.D., Ellefson, R.D. & Ryan, R.J. (1976). The porcine ovarian follicle. I. Selected chemical analysis of follicular fluid at different developmental stages. Biol. Reprod. 15, 321–8.CrossRefGoogle ScholarPubMed
Choi, Y.H., Lee, B.C., Lim, J.M., Kang, S.K. & Hwang, W.S. (2002). Optimization of culture medium for cloned bovine embryos and its influence on pregnancy and delivery outcome. Theriogenology 58, 1187–97.CrossRefGoogle ScholarPubMed
Cross, P.C. & Brinster, R.L. (1970). In vitro development of mouse oocytes. Biol. Reprod. 3, 298307.Google Scholar
Das, S.K., Chauhan, M.S., Palta, P. & Tomer, O.S. (1997). Influence of cumulus cells on in vitro maturation of denuded buffalo (Bubalus bubalis) oocytes. Vet. Rec. 141, 522–3.Google Scholar
Folkow, L.P. & Blix, A.S. (1992). Metabolic rates of minke whales (Balaenoptera acutorostrata) in cold water. Acta. Physiol. Scand. 146, 141–50.Google Scholar
Fukui, Y. (1990). Effect of follicle cells on the acrosome reaction, fertilization and developmental competence of bovine embryos matured in vitro. Mol. Reprod. Dev. 26, 40–6.CrossRefGoogle ScholarPubMed
Fukui, Y., Iwayama, H., Matsuoka, T., Nagai, H., Koma, N., Mogoe, T., Ishikawa, H., Fujise, Y., Hirabayashi, M., Hochi, S., Kato, H. & Ohsumi, S. (2007). Attempt at intracytoplasmic sperm injection of in vitro matured oocytes in common minke whale (Balaenoptera acutorostrata) captured during the Kushiro Coast survey. J. Reprod. Dev. 53, 945–52.CrossRefGoogle ScholarPubMed
Fukui, Y., Mogoe, T., Ishikawa, H. & Ohsumi, S. (1997a). Factors affecting in vitro maturation of minke whale (Balaenoptera acutorostrata) follicular oocytes. Biol. Reprod. 56, 523–8.Google Scholar
Fukui, Y., Mogoe, T., Ishikawa, H., Ohsumi, S. (1997b). In vitro fertilization of in vitro matured minke whale (Balaenoptera acutorostrata) follicular oocytes. Marine Mamm. Sci. 13, 395404.CrossRefGoogle Scholar
Fukui, Y., Mogoe, T., Terawaki, Y., Ishikawa, H., Fujise, Y. & Ohsumi, S. (1995). Relationship between physiological status and serum constituent values in minke whales (Balaenoptera acutorostrata). J. Reprod. Dev. 41, 203–8.Google Scholar
Fujihira, T., Kobayashi, M., Hochi, S., Hirabayashi, M., Ishikawa, H., Ohsumi, S. & Fukui, Y. (2006). Developmental capacity of Antarctic minke whale (Balaenoptera bonaerensis) vitrified oocytes following in vitro maturation, and parthenogenetic activation or intracytoplasmic sperm injection. Zygote 14, 8995.CrossRefGoogle ScholarPubMed
Ikumi, S., Sawai, K., Takeuchi, Y., Iwayama, H., Ishikawa, H., Ohsumi, S. & Fukui, Y. (2004). Interspecies somatic cell nuclear transfer for in vitro production of Antarctic minke whale (Balaenoptera bonaerensis) embryos. Cloning Stem Cells 6, 284–93.CrossRefGoogle ScholarPubMed
Iwayama, H., Hochi, S., Kato, M., Hirabayashi, M., Kuwayama, M., Ishikawa, H., Ohsumi, S. & Fukui, Y. (2004). Effects of cryodevice type and donors’ sexual maturity on vitrification of minke whale (Balaenoptera bonaerensis) oocytes at germinal vesicle stage. Zygote 12, 333–8.Google Scholar
Iwayama, H., Ishikawa, H., Ohsumi, S. & Fukui, Y. (2005). Attempt at in vitro maturation of minke whale (Balaenoptera bonaerensis) oocytes using portable CO2 incubator. J. Reprod. Dev. 51, 6975.Google Scholar
Kelly, J.M., Kleemann, D.O., Rudiger, S.R. & Walker, S.K. (2007). Effects of grade of oocyte–cumulus complex and the interactions between grades on the production of blastocysts in the cow, ewe and lamb. Reprod. Dom. Anim. 42, 577–82.Google Scholar
Krisher, R.L., Lane, M. & Bavister, B.D. (1999). Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol. Reprod. 60, 1345–52.CrossRefGoogle ScholarPubMed
Lawitts, J.A. & Biggers, J.D. (1992). Joint effects of sodium chloride, glutamine and glucose in mouse preimplantation embryo culture media. Mol. Reprod. Dev. 31, 189–94.Google Scholar
Leibfried-Rutledge, M.L., Crister, E.S., Parrish, J.J. & First, N.L. (1989). In vitro maturation and fertilization of bovine oocytes. Theriogenology 31, 6174.CrossRefGoogle Scholar
Li, J. & Foote, R.H. (1996). Differential sensitivity of one-cell and two-cell rabbit embryos to sodium chloride and total osmolarity during culture into blastocysts. J. Reprod. Fertil. 108, 307–12.CrossRefGoogle ScholarPubMed
Lim, J.M., Kim, J.H., Okuda, K. & Niwa, K. (1994a). The importance of sodium chloride concentration in a chemically defined medium for the development of bovine oocytes matured and fertilized in vitro. Theriogenology 42, 421–32.CrossRefGoogle Scholar
Lim, J.M., Okitsu, O., Okuda, K. & Niwa, K. (1994b). Effects of fetal calf serum in culture medium on development of bovine oocytes matured and fertilized in vitro. Theriogenology 41, 1091–8.CrossRefGoogle ScholarPubMed
Liu, Z. & Foote, R.H. (1996). Sodium chloride, osmolyte and osmolarity effects on blastocyst formation in bovine embryos produced by in vitro fertilization (IVF) and cultured in simple serum-free media. J. Assist. Reprod. Genet. 13, 562–8.CrossRefGoogle ScholarPubMed
Loos de, F., van Vliet, C., van Maurik, P. & Kruip, Th. A.M. (1989). Morphology of immature bovine oocytes. Gamete Res. 24, 197204.CrossRefGoogle Scholar
Mackintosh, N.A. (1966). The distribution of southern blue and fin whales. In: Noris, K.S. (ed.), Whales, Dolphins and Porpoises. University of California Press, Berkeley, pp. 125–44.CrossRefGoogle Scholar
Meinecke, B. & Meinecke-Tillmann, S. (1993). Effects of alpha-amanitin on nuclear maturation of porcine oocytes in vitro. J. Reprod. Fertil. 98, 195201.CrossRefGoogle ScholarPubMed
Miyoshi, K., Funahashi, H., Okuda, K. & Niwa, K. (1994). Development of rat one-cell embryos in a chemically defined medium: effects of glucose, phosphate and osmolarity. J. Reprod. Fertil. 100, 21–6.CrossRefGoogle Scholar
Pinyopummintr, T. & Bavister, B.D. (1991). In vitro matured/in vitro fertilized bovine oocytes can develop into morulae/blastocysts in chemically defined, protein-free culture media. Biol. Reprod. 45, 736–42.Google Scholar
Pukazhenthi, B., Comizzoli, P., Travis, A.J. & Wildt, D.E. (2006). Applications of emerging technologies to the study and conservation of threatened and endangered species. Reprod. Fertil. Dev. 18, 7790.Google Scholar
Rocha, A.A., Bastos, R., Cunha, I.C.N., Adona, P.R. & Santos, J.A. (2006). Quantity and quality of oocytes recovered from donor bitches of different ages. Theriogenology 66, 1465–7.CrossRefGoogle ScholarPubMed
Roblero, L., Biggers, J.D. & Lechene, C.P. (1976). Electron probe analysis of the elemental microenvironment of oviductal mouse embryos. J. Reprod. Fertil. 46, 431–4.Google Scholar
Suzuki, M., Misumi, K., Ozawa, M., Noguchi, J., Kaneko, H., Ohnuma, K., Fuchimoto, D.I., Onishi, A., Iwamoto, M., Saito, N., Nagai, T. & Kikuchi, K. (2006). Successful piglet production by IVF of oocytes matured in vitro using NCSU-37 supplemented with fetal bovine serum. Theriogenology 65, 374–86.CrossRefGoogle ScholarPubMed
Tervit, H.R., Whittingham, D.G. & Rowson, L.E.A. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30, 493–7.CrossRefGoogle ScholarPubMed
Vanderhyden, B.C. & Armstrong, D.T. (1989)., Role of cumulus cells and serum on the in vitro maturation, fertilization and subsequent development of rat oocytes. Biol. Reprod. 40, 720–8.CrossRefGoogle ScholarPubMed
Vazquez, J.C., Moreno, J.F., Hanneman, R., Evans, J.W. & Kraemer, D.C. (1993). Evaluation of three techniques (follicular aspiration, follicular aspiration and flushing and slicing of the ovaries) for recovery of equine oocytes from excised ovaries. J. Equine Vet. Sci. 13,483–6.Google Scholar
Wani, N.A., Wani, G.M., Khan, M.Z. & Sidiqi, M.A. (1999). Effect of different factors on the recovery rate of oocytes for in vitro maturation and in vitro fertilization procedures in sheep. Small Rum. Res. 34, 71–6.CrossRefGoogle Scholar
Wrenzycki, C., Hermann, D., Carnwath, J.W. & Niemann, H. (1999). Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53, 818.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Wrenzycki, C., Herrmann, D., Keskintepe, L., Martins, A. Jr., Sirisathien, S., Brackett, B. & Niemann, H. (2001). Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum. Reprod. 16, 893901.Google Scholar