Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T18:19:43.514Z Has data issue: false hasContentIssue false

The use of R-roscovitine to fit the ‘time frame’ on in vitro porcine embryo production by intracytoplasmic sperm injection

Published online by Cambridge University Press:  01 February 2009

J. Alfonso
Affiliation:
Centro de Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), 12400, Segorbe, Castellón, Spain. Instituto de Medicina Reproductiva (IMER), 46009, Valencia, Spain.
E. García-Rosello
Affiliation:
Facultad de Ciencias Experimentales y de la Salud, Universidad CEU-Cardenal Herrera. Edificio Seminario s/n 46113, Moncada-Valencia, Spain.
E. García-Mengual
Affiliation:
Centro de Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), 12400, Segorbe, Castellón, Spain.
I. Salvador
Affiliation:
Centro de Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), 12400, Segorbe, Castellón, Spain.
M. A. Silvestre*
Affiliation:
Centro de Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo 187, Pol. La Esperanza no. 100, 12400, Segorbe, Castellón, Spain. Centro de Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), 12400, Segorbe, Castellón, Spain.
*
All correspondence to: Miguel Ángel Silvestre. Centro de Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo 187, Pol. La Esperanza no. 100, 12400, Segorbe, Castellón, Spain. e-mail: [email protected]

Summary

Micromanipulation of oocytes is time consuming during ICSI experiments; however the ‘time frame’ to manipulate oocytes without a drop in efficiency is not very wide due to the use of not completely matured and/or aged MII oocytes. Therefore, the aim of this work was to study the effect of a short roscovitine pretreatment for 5 h and two different IVM periods (5R + 40IVM or 5R + 45IVM) and a prolonged IVM time from 45 h (45IVM) to 50 h (50IVM) on parthenogenetic and ICSI embryo development, in order to fit the time frame to manipulate pig oocytes to the whole labour day session. In the first experiment, oocytes, pretreated with roscovitine and IVM cultured for 5 h, showed a similar nuclear stage as non-cultured oocytes and a significantly higher percentage of GVI-GVII oocytes compared with non-roscovitine treated oocytes cultured for 5 h in IVM conditions. When COC were cultured under the 5R + 40IVM system, nuclear maturation and cleavage rates after electrical activation were significantly lower than when COC were cultured under the 45IVM, 50IVM and 5R + 45IVM culture systems (54.2% vs. 72.6–76.8% and 58.8% vs. 81.4–88.3%, respectively). However, this difference was not statistically significant for parthenogenote blastocyst rate. No differences were observed in MII and in parthenogenote and ICSI embryo development among 45IVM, 50IVM and 5R + 45IVM experimental groups. In conclusion, under our conditions and using parthenogenetic and ICSI embryos, we observed that it is feasible to prolong the pig oocyte manipulation ‘time frame’ by at least 5 h with no significant drop in blastocyst rate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeydeera, L.R., Wang, W.H., Cantley, T.C., Prather, R.S. & Day, B.N. (1998). Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology 50, 747–56.CrossRefGoogle ScholarPubMed
Abeydeera, L.R., Wang, W.H., Cantley, T.C., Rieke, A., Murphy, C.N., Prather, R.S. & Day, B.N. (2000). Development and viability of pig oocytes matured in a proteinfree medium containing epidermal growth factor. Theriogenology 54, 787–97.Google Scholar
Coy, P., Romar, R., Ruiz, S., Cánovas, S., Gadea, J., García Vázquez, F. & Matás, C. (2005). Birth of piglets after transferring of in vitro-produced embryos pre-matured with R-roscovitine. Reproduction 129, 747–55.CrossRefGoogle ScholarPubMed
De Azevedo, W.F., Leclerc, S., Meijer, L., Havlicek, L., Strnad, M. & Kim, S.H. (1997). Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur. J. Biochem. 243, 518–26.CrossRefGoogle ScholarPubMed
Fissore, R.A., Kurokawa, M., Knott, J., Zhang, M. & Smyth, J. (2002). Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction 124, 745–54.CrossRefGoogle ScholarPubMed
Garcia-Rosello, E., Coy, P., García Vázquez, F.A., Ruiz, S. & Matas, C. (2006). Analysis of different factors influencing the intracytoplasmic sperm injection (ICSI) yield in pigs. Theriogenology 66, 1857–65.Google Scholar
Garcia-Rosello, E., García-Mengual, E., Coy, P., Alfonso, J. & Silvestre, M.A. (2008). Intracytoplasmic sperm injection in livestock species: an update. Reprod. Domest. Anim. (in press).Google Scholar
Grupen, C.G., Nagashima, H. & Nottle, M.B. (1997). Role of epidermal growth factor and insulin-like growth factor-I on porcine oocyte maturation and embryonic development in vitro. Reprod. Fertil. Dev. 9, 571–5.CrossRefGoogle ScholarPubMed
Gupta, M.K., Uhm, S.J. & Lee, H.T. (2008). Sexual maturity and reproductive phase of oocyte donor influence the developmental ability and apoptosis of cloned and parthenogenetic porcine embryos. Anim. Reprod. Sci. 108, 107–21.Google Scholar
Hölker, M., Petersen, B., Hassel, P., Kues, WA., Lemme, E., Lucas-Hahn, A. & Niemann, H. (2005). Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos. Cloning Stem Cells 7, 3544.Google Scholar
Ikeda, K. & Takahashi, Y. (2001). Effects of maturational age of porcine oocytes on the induction of activation and development in vitro following somatic cell nuclear transfer. J. Vet. Med. Sci. 63, 1003–8.Google Scholar
Ju, J.C., Tsay, C. & Ruan, C.W. (2003). Alterations and reversibility in the chromatin, cytoskeleton and development of pig oocytes treated with roscovitine. Mol. Reprod. Dev. 64, 482–91.CrossRefGoogle ScholarPubMed
Kikuchi, K., Naito, K., Noguchi, J., Shimada, A., Kaneko, H., Yamashita, M., Aoki, F., Tojo, H. & Toyoda, Y. (2000). Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes. Biol. Reprod. 63, 715–22.Google Scholar
Kikuchi, K., Naito, K., Noguchi, J., Kaneko, H. & Tojo, H. (2002). Maturation/M-phase promoting factor regulates aging of porcine oocytes matured in vitro. Cloning Stem Cells 4, 211–22.Google Scholar
Krischek, C. & Meinecke, B. (2001). Roscovitine, a specific inhibitor of cyclin-dependent protein kinases, reversibly inhibits chromatin condensation during in vitro maturation of porcine oocytes. Zygote 9, 309–16.CrossRefGoogle ScholarPubMed
Marchal, R., Tomanek, M., Terqui, M. & Mermillod, P. (2001). Effects of cell cycle dependent kinases inhibitor on nuclear and cytoplasmic maturation of porcine oocytes. Mol. Reprod. Dev. 60, 6573.Google Scholar
Marques, M.G., Nicacio, A.C., de Oliveira, V.P., Nascimento, A.B., Caetano, H.V.A., Mendes, C.M., Mello, M.R.B., Milazzotto, M.P., Assumpcao, M.E. & Visintin, J.A. (2007). In vitro maturation of pig oocytes with different media, hormonal and meiosis inhibitors. Anim. Reprod. Sci. 97, 375–81.CrossRefGoogle ScholarPubMed
Meijer, L. & Kim, S.H. (1997). Chemical inhibitors of cyclin-dependent kinases. Methods Enzymol. 283, 113–28.CrossRefGoogle ScholarPubMed
Romar, R. & Funahashi, H. (2006). In vitro maturation and fertilization of porcine oocytes after a 48 h culture in roscovitine, an inhibitor of p34cdc2/cyclin B kinase. Anim. Reprod. Sci. 92, 321–33.CrossRefGoogle ScholarPubMed
Sasseville, M., Côté, N., Guillemette, C. & Richard, F.J. (2006). New insight into the role of phosphodiesterase 3A in porcine oocyte maturation. BMC Dev. Biol. 6, 47.Google Scholar
Sasseville, M., Côté, N., Vigneault, C., Guillemette, C. & Richard, F.J. (2007). 3′5′-cyclic adenosine monophosphate-dependent up-regulation of phosphodiesterase type 3A in porcine cumulus cells. Endocrinology 148, 1858–67.CrossRefGoogle ScholarPubMed
Schoevers, E.J., Bevers, M.M., Roelen, B.A. & Colenbrander, B. (2005). Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitro maturation. Theriogenology 63, 1111–30.Google Scholar
Silvestre, M.A., Alfonso, J., García-Mengual, E., Salvador, I., Duque, C.C. & Molina, I. (2007). Effect of recombinant human follicle-stimulating hormone and luteinizing hormone on in vitro maturation of porcine oocytes evaluated by the subsequent in vitro development of embryos obtained by in vitro fertilization, intracytoplasmic sperm injection, or parthenogenetic activation. J. Anim. Sci. 85, 11561160.Google Scholar
Webb, M., Howlett, S.K. & Maro, B. (1986). Parthenogenesis and cytoskeletal organization in ageing mouse eggs. J. Embryol. Exp. Morphol. 95, 131–45.Google ScholarPubMed
Wehrend, A. & Meinecke, B. (2001). Kinetics of meiotic progression, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the length of the meiotic stages. Anim. Reprod. Sci. 66, 175–84.CrossRefGoogle ScholarPubMed
Ye, J., Flint, A.P., Campbell, K.H. & Luck, M.R. (2002). Synchronization of porcine oocyte meiosis using cycloheximide and its application to the study of regulation by cumulus cells. Reprod. Fertil. Dev. 14, 433–42.CrossRefGoogle Scholar
Ye, J., Campbell, K.H., Craigon, J. & Luck, M.R. (2005). Dynamic changes in meiotic progression and improvement of developmental competence of pig oocytes in vitro by follicle-stimulating hormone and cycloheximide. Biol. Reprod. 72, 399406.CrossRefGoogle ScholarPubMed
Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I.M. & Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–9.CrossRefGoogle Scholar