Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T02:13:08.043Z Has data issue: false hasContentIssue false

Signals that make you different: receptor-mediated signal transduction in early development

Published online by Cambridge University Press:  26 September 2008

Charles L. Saxe III
Affiliation:
Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322-3030, USA

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.C. & Watt, F.M. (1993). Regulation of development and differentiation by the extracellular matrix. Development 117, 1183–98.CrossRefGoogle ScholarPubMed
Bonfini, L., Karlovich, C.A., Dasgupta, C. & Benerjee, U. (1992). The son of sevenless gene product: a putative activator of ras. Science 255, 603–6.CrossRefGoogle Scholar
Brand, A.H. & Perrimon, N. (1994). Raf acts downstream, of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis. Gen. Dev. 8, 629–39.CrossRefGoogle ScholarPubMed
Cameron, R.A.Smith, L.C., Britten, R.J. & Davidson, E.H. (1994). Ligand-dependent stimulation of introduced mammalian brain receptors alters spicule symmetry and other morphogenetic even in sea urchin embryos. Mech. Dev. 45, 3147.CrossRefGoogle Scholar
Casanova, J. & Strutl, G. (1993). The torso receptor localizes as well as transduces the spatial signal specifying terminal body pattern in Drosophila. Nature 362, 152–5.CrossRefGoogle ScholarPubMed
Cowan, A.E. & McIntosh, J.R. (1985). Mapping the distribution of differentiation potential for intestine muscle and hypodermis during early development in Caenorhabditis elegans. Cell 41, 923–32.CrossRefGoogle ScholarPubMed
Dale, B. (1993). Forum: How does a spermatozoon activate an oocyte? Zygote 1, 273.CrossRefGoogle Scholar
Dardik, A., Smith, R.M. & Schultz, R.M. (1992). Colocalization of transforming growth factor-α and a functional epidermal growth factor receptor (EGFR) to the inner cell mass and preferential localization of the EGFR on the basolateral surface of the trophectoderm in the mouse blastocyst. Dev. Biol. 154, 396409.CrossRefGoogle Scholar
DeHaan, R.L. (1994). Gap junction communication and cell adhesion in development. Zygote 2, 183–8.CrossRefGoogle ScholarPubMed
Egan, S.E. & Weinberg, R.A. (1993). The pathway to signal achievement. Nature 365, 781–2.CrossRefGoogle ScholarPubMed
Folz, K.R. & Shilling, F.M. (1993). Receptor-mediated signal transduction and egg activation. Zygote 1, 276–9.CrossRefGoogle Scholar
Friesel, R. & Brown, S.A.N. (1992). spatially restricted expression of fibroblast growth factor recepter-2 during Xenopus development. Development 116, 1051–8.CrossRefGoogle Scholar
Greenwald, I. & Rubin, G.M. (1992). Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells. cell 68, 271–81.CrossRefGoogle ScholarPubMed
Gupta, S.K., Gallego, C. & Johnson, G.L. (1992). Mitogenic pathways regulated by G protein oncogenes. Mol. Biol. cell 3, 123–8.CrossRefGoogle ScholarPubMed
Gurdon, J.B. (1992). The generation of diversity and pattern in animal development. Cell 68, 185–99.CrossRefGoogle ScholarPubMed
Hemmati-Brivanlou, A. & Melton, D.A. (1992). A trunacated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–14.CrossRefGoogle ScholarPubMed
Hill, D.J. (1992). Peptide growth factor interactions in embryonic and fetal growth. Horm. Res. 38, 197202.CrossRefGoogle ScholarPubMed
Horvitz, H.R. & Herskowitz, I. (1992). Mechanisms of asymmetric cell division: two Bs or not to Bs, that is the question. Cell 68, 237–55.CrossRefGoogle ScholarPubMed
Howard, J.E. & Smith, J.C. (1993). Analysis of gastrulation: different types of gastrulation movement are induced by different mesoderm-inducing factors in Xenopus laevis. Mech. Dev. 43, 3748.CrossRefGoogle ScholarPubMed
Hynes, R.O. & Lander, A.D. (1992). Contact and adhesive specificities in the associations, migrations and targeting of cells and axons. Cell 68, 303–22.CrossRefGoogle ScholarPubMed
Jaffe, L.A., Gallo, C.J., Lee, R.H., Ho, Y-K, & Jones, T. (1993). Oocyte maturation in starfish is mediated by the βγ-subunit complex of a G-protein. J. Cell Biol. 121, 775–83.CrossRefGoogle Scholar
Jessell, T.M. & Melton, D.A. (1992). Diffusible factors in vertebrate embryonic induction. Cell 68, 257–70.CrossRefGoogle ScholarPubMed
Jones, J., Logan, C. & Schultz, R.M. (1992). Changes in temporal and spatial patterns of Gi protein expression in postimplantation mouse embryos. Dev. Biol. 145, 128–38.CrossRefGoogle Scholar
Katz, W.S. & Sternberg, P.W. (1992). A phethora of intercellular signals during Caenorhabditis elegans development. Curr. Opin. Cell Biol. 4, 939–47.CrossRefGoogle ScholarPubMed
Kidder, G.M. (1992). The genetic program for preimplantation development. Dev. Genet. 13, 319–25.CrossRefGoogle ScholarPubMed
Kingsley, D.M. (1994). The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Gen. Dev. 8, 133–46.CrossRefGoogle ScholarPubMed
Lauder, J.M. (1993). Neurotransmitters as growth regulatory signals: role of receptors and second messengers. TINS 16, 233–40.Google ScholarPubMed
Lawrence, P.A. (1992). The Making of a Fly. Oxford: Blackwell Scientific.Google Scholar
Lin, S-C, Lin, R.L., Gukovsky, I., Lusis, A.J., Sawchenko, P.E. & Rosenfeld, M.G. (1993). Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 364, 208–13.CrossRefGoogle ScholarPubMed
Lochrie, M.A., Mendel, J.E., Sternberg, P.W. & Simon, M.I. (1991). Homologous and unique G protein subunits in the nematode Caenorhabditis elegans. Cell Regul. 2, 135–54.CrossRefGoogle ScholarPubMed
Lohnes, D., Dierich, A., Ghyselinck, N., Kasner, P., Lampron, C., LeMeur, M., Luflin, T., Mendelsohn, C., Nakshatri, H. & Cambon, P. (1992). Retinoid receptors and binding proteins. J. Cell Sci. 16 (suppl.), 6976.CrossRefGoogle ScholarPubMed
Olson, D.J., Christian, J.L. & Moon, R.T. (1991). Effect of Wnt-I and related proteins on gap junctional communication in Xenopus embryos. Science 252, 1173–6.CrossRefGoogle Scholar
Otte, A.P., McGrew, L., Olate, J.Nathanson, N.M. & Moon, R.T. (1992). Expression and potenteal function of G-protein a subunits in embryos of Xenopus laevis. Department 116, 141–6.Google ScholarPubMed
Parks, S. & Wieschaus, E. (1991). The Drosophila gastrulation gene concertina endodes a Gα-like protein. Cell 64, 447–58.CrossRefGoogle Scholar
Perkins, L.A., Larsen, I. & Perrimon, N. (1992). corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 70, 225–36.CrossRefGoogle ScholarPubMed
Reymond, C.D., Gomer, R.H., Nellen, W., Theibert, A., Devreotes, P. & Firtel, R.A. (1986). Phenotypic changes induced by a mutated ras gene during development of Dictystelium transformants. Nature 323, 340–3.CrossRefGoogle Scholar
Saxe, C.L., Johnson, R., Devreotes, P.N. & Kimmel, A.R. (1991). Multiple genes of cell surface cAMP receptors in Dectyostelium discoideum. Dev. Genet. 12, 613.CrossRefGoogle ScholarPubMed
Sulston, J.E., Schierenberg, E., White, J.G. & Thomason, J.N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64119.CrossRefGoogle ScholarPubMed
Swann, K. (1993). The soluble oscillogen hypothesis. Zygote 1, 273–6.CrossRefGoogle ScholarPubMed
Thomsen, G.H. & Melton, D.A. (1993). Processed Vgl protein is an axial mesoderm inducer in Xenopus. Cell 74, 433–41.CrossRefGoogle Scholar
Whitaker, M. & Swann, K. (1993). Lighting the fuse at fertilization. Development 117, 112.CrossRefGoogle Scholar
Whiteman, M. & Melton, D.A. (1992). Involvement of p21ras in Xenpus mesodern induction. Nature 357, 252–5.CrossRefGoogle Scholar
Wolfgang, W.J., Quan, F., Thambi, N. & Forte, M. (1991). Restricted spatial and temporal expression of G-protein α subunits during Drosophila embryogenesis. Development 113, 527–38.CrossRefGoogle ScholarPubMed