Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T15:28:17.242Z Has data issue: false hasContentIssue false

Production of transgenic canine embryos using interspecies somatic cell nuclear transfer

Published online by Cambridge University Press:  08 February 2011

So Gun Hong
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151–742, Korea.
Hyun Ju Oh
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151–742, Korea.
Jung Eun Park
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151–742, Korea.
Min Jung Kim
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151–742, Korea.
Geon A. Kim
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151–742, Korea.
Ok Jae Koo
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151–742, Korea.
Goo Jang
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151–742, Korea.
Byeong Chun Lee*
Affiliation:
Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151–742, Korea.
*
All correspondence to: Byeong Chun Lee. Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151–742, Korea. Tel: +822 880 1269. Fax: +822 873 1269. e-mail: [email protected]

Summary

Somatic cell nuclear transfer (SCNT) has emerged as an important tool for producing transgenic animals and deriving transgenic embryonic stem cells. The process of SCNT involves fusion of in vitro matured oocytes with somatic cells to make embryos that are transgenic when the nuclear donor somatic cells carry ‘foreign’ DNA and are clones when all the donor cells are genetically identical. However, in canines, it is difficult to obtain enough mature oocytes for successful SCNT due to the very low efficiency of in vitro oocyte maturation in this species that hinders canine transgenic cloning. One solution is to use oocytes from a different species or even a different genus, such as bovine oocytes, that can be matured easily in vitro. Accordingly, the aim of this study was: (1) to establish a canine fetal fibroblast line transfected with the green fluorescent protein (GFP) gene; and (2) to investigate in vitro embryonic development of canine cloned embryos derived from transgenic and non-transgenic cell lines using bovine in vitro matured oocytes. Canine fetal fibroblasts were transfected with constructs containing the GFP and puromycin resistance genes using FuGENE 6®. Viability levels of these cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Interspecies SCNT (iSCNT) embryos from normal or transfected cells were produced and cultured in vitro. The MTT measurement of GFP-transfected fetal fibroblasts (mean OD = 0.25) was not significantly different from non-transfected fetal fibroblasts (mean OD = 0.35). There was no difference between transgenic iSCNT versus non-transgenic iSCNT embryos in terms of fusion rates (73.1% and 75.7%, respectively), cleavage rates (69.7% vs. 73.8%) and development to the 8–16-cell stage (40.1% vs. 42.7%). Embryos derived from the transfected cells completely expressed GFP at the 2-cell, 4-cell, and 8–16-cell stages without mosaicism. In summary, our results demonstrated that, following successful isolation of canine transgenic cells, iSCNT embryos developed to early pre-implantation stages in vitro, showing stable GFP expression. These canine–bovine iSCNT embryos can be used for further in vitro analysis of canine transgenic cells and will contribute to the production of various transgenic dogs for use as specific human disease models.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arat, S., Gibbons, J., Rzucidlo, S.J., Respess, D.S., Tumlin, M. & Stice, S.L. (2002). In vitro development of bovine nuclear transfer embryos from transgenic clonal lines of adult and fetal fibroblast cells of the same genotype. Biol. Reprod. 66, 1768–74.CrossRefGoogle ScholarPubMed
Bradley, A., Evans, M., Kaufman, M.H. & Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–6.CrossRefGoogle ScholarPubMed
Brunetti, D., Perota, A., Lagutina, I., Colleoni, S., Duchi, R., Calabrese, F., Seveso, M., Cozzi, E., Lazzari, G., Lucchini, F. & Galli, C. (2008). Transgene expression of green fluorescent protein and germ line transmission in cloned pigs derived from in vitro transfected adult fibroblasts. Cloning Stem Cells 10, 409–19.CrossRefGoogle ScholarPubMed
Cho, J., Bhuiyan, M.M., Shin, S., Park, E., Jang, G., Kang, S., Lee, B. & Hwang, W. (2004). Development potential of transgenic somatic cell nuclear transfer embryos according to various factors of donor cell. J. Vet. Med. Sci. 66, 1567–73.CrossRefGoogle ScholarPubMed
Forsberg, E.J., Strelchenko, N.S., Augenstein, M.L., Betthauser, J.M., Childs, L.A., Eilertsen, K.J., Enos, J.M., Forsythe, T.M., Golueke, P.J., Koppang, R.W., Lange, G., Lesmeister, T.L., Mallon, K.S., Mell, G.D., Misica, P.M., Pace, M.M., Pfister-Genskow, M., Voelker, G.R., Watt, S.R. & Bishop, M.D. (2002). Production of cloned cattle from in vitro systems. Biol. Reprod. 67, 327–33.CrossRefGoogle ScholarPubMed
Hong, S.G., Jang, G., Oh, H.J., Koo, O.J., Park, J.E., Park, H.J., Kang, S.K. & Lee, B.C. (2009a). The effects of brain-derived neurotrophic factor and metformin on in vitro developmental competence of bovine oocytes. Zygote 17, 187–93.CrossRefGoogle ScholarPubMed
Hong, S.G., Kim, M.K., Jang, G., Oh, H.J., Park, J.E., Kang, J.T., Koo, O.J., Kim, T., Kwon, M.S., Koo, B.C., Ra, J.C., Kim, D.Y., Ko, C. & Lee, B.C. (2009b). Generation of red fluorescent protein transgenic dogs. Genesis 47, 314–22.CrossRefGoogle ScholarPubMed
Hyun, S., Lee, G., Kim, D., Kim, H., Lee, S., Nam, D., Jeong, Y., Kim, S., Yeom, S., Kang, S., Han, J., Lee, B. & Hwang, W. (2003). Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol. Reprod. 69, 1060–8.CrossRefGoogle ScholarPubMed
Illmensee, K., Levanduski, M. & Zavos, P.M. (2006). Evaluation of the embryonic preimplantation potential of human adult somatic cells via an embryo interspecies bioassay using bovine oocytes. Fertil. Steril. 85 Suppl 1, 1248–60.CrossRefGoogle ScholarPubMed
Jang, G., Bhuiyan, M.M., Jeon, H.Y., Ko, K.H., Park, H.J., Kim, M.K., Kim, J.J., Kang, S.K., Lee, B.C. & Hwang, W.S. (2006). An approach for producing transgenic cloned cows by nuclear transfer of cells transfected with human alpha 1-antitrypsin gene. Theriogenology 65, 1800–12.CrossRefGoogle ScholarPubMed
Keefer, C.L., Baldassarre, H., Keyston, R., Wang, B., Bhatia, B., Bilodeau, A.S., Zhou, J.F., Leduc, M., Downey, B.R., Lazaris, A. & Karatzas, C.N. (2001). Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol. Reprod. 64, 849–56.CrossRefGoogle ScholarPubMed
Lai, L., Park, K.W., Cheong, H.T., Kuhholzer, B., Samuel, M., Bonk, A., Im, G.S., Rieke, A., Day, B.N., Murphy, C.N., Carter, D.B. & Prather, R.S. (2002). Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol. Reprod. Dev. 62, 300–6.CrossRefGoogle ScholarPubMed
Lee, E., Kim, J.H., Park, S.M., Jeong, Y.I., Lee, J.Y., Park, S.W., Choi, J., Kim, H.S., Jeong, Y.W., Kim, S., Hyun, S.H. & Hwang, W.S. (2008). The analysis of chromatin remodeling and the staining for DNA methylation and histone acetylation do not provide definitive indicators of the developmental ability of inter-species cloned embryos. Anim. Reprod. Sci. 105, 438–50.CrossRefGoogle Scholar
Lee, G.S., Kim, H.S., Hyun, S.H., Lee, S.H., Jeon, H.Y., Nam, D.H., Jeong, Y.W., Kim, S., Kim, J.H., Han, J.Y., Ahn, C., Kang, S.K., Lee, B.C. & Hwang, W.S. (2005a). Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein. Theriogenology 63, 973–91.CrossRefGoogle ScholarPubMed
Lee, S.L., Ock, S.A., Yoo, J.G., Kumar, B.M., Choe, S.Y. & Rho, G.J. (2005b). Efficiency of gene transfection into donor cells for nuclear transfer of bovine embryos. Mol. Reprod. Dev. 72, 191200.CrossRefGoogle ScholarPubMed
Mack, G.S. (2005). Cancer researchers usher in dog days of medicine. Nat. Med. 11, 1018.Google ScholarPubMed
McCreath, K.J., Howcroft, J., Campbell, K.H., Colman, A., Schnieke, A.E. & Kind, A.J. (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066–9.CrossRefGoogle ScholarPubMed
Murakami, M., Otoi, T., Wongsrikeao, P., Agung, B., Sambuu, R. & Suzuki, T. (2005). Development of interspecies cloned embryos in yak and dog. Cloning Stem Cells 7, 7781.CrossRefGoogle ScholarPubMed
Niidome, T. & Huang, L. (2002). Gene therapy progress and prospects: nonviral vectors. Gene Ther. 9, 1647–52.CrossRefGoogle ScholarPubMed
Oh, H.J., Kim, M.K., Jang, G., Kim, H.J., Hong, S.G., Park, J.E., Park, K., Park, C., Sohn, S.H., Kim, D.Y., Shin, N.S. & Lee, B.C. (2008). Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 70, 638–47.CrossRefGoogle ScholarPubMed
Ono, Y., Shimozawa, N., Ito, M. & Kono, T. (2001). Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol. Reprod. 64, 4450.CrossRefGoogle ScholarPubMed
Ostrander, E.A., Galibert, F. & Patterson, D.F. (2000). Canine genetics comes of age. Trends Genet. 16, 117–24.CrossRefGoogle ScholarPubMed
Park, K.W., Lai, L., Cheong, H.T., Cabot, R., Sun, Q.Y., Wu, G., Rucker, E.B., Durtschi, D., Bonk, A., Samuel, M., Rieke, A., Day, B.N., Murphy, C.N., Carter, D.B. & Prather, R.S. (2002). Mosaic gene expression in nuclear transfer-derived embryos and the production of cloned transgenic pigs from ear-derived fibroblasts. Biol. Reprod. 66, 1001–5.CrossRefGoogle ScholarPubMed
Pluck, A. & Klasen, C. (2009). Generation of chimeras by microinjection. Methods Mol. Biol. 561, 199217.CrossRefGoogle ScholarPubMed
Robertson, E.J. (1991). Using embryonic stem cells to introduce mutations into the mouse germ line. Biol. Reprod. 44, 238–45.CrossRefGoogle ScholarPubMed
Schneider, M.R., Wolf, E., Braun, J., Kolb, H.J. & Adler, H. (2009). Canine embryonic stem cells: state of the art. Theriogenology 74, 492–7.CrossRefGoogle ScholarPubMed
Schramm, R.D. & Bavister, B.D. (1999). Onset of nucleolar and extranucleolar transcription and expression of fibrillarin in macaque embryos developing in vitro. Biol. Reprod. 60, 721–8.CrossRefGoogle ScholarPubMed
Song, B.S., Lee, S.H., Kim, S.U., Kim, J.S., Park, J.S., Kim, C.H., Chang, K.T., Han, Y.M., Lee, K.K., Lee, D.S. & Koo, D.B. (2009). Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells. BMC Dev. Biol. 9, 44.CrossRefGoogle ScholarPubMed
Sugawara, A., Sugimura, S., Hoshino, Y. & Sato, E. (2009). Development and spindle formation in rat somatic cell nuclear transfer (SCNT) embryos in vitro using porcine recipient oocytes. Zygote 17, 195202.CrossRefGoogle ScholarPubMed
Sutter, N.B. & Ostrander, E.A. (2004). Dog star rising: the canine genetic system. Nat. Rev. Genet. 5, 900–10.CrossRefGoogle ScholarPubMed
Uhm, S.J., Gupta, M.K., Kim, T. & Lee, H.T. (2007). Expression of enhanced green fluorescent protein in porcine- and bovine-cloned embryos following interspecies somatic cell nuclear transfer of fibroblasts transfected by retrovirus vector. Mol. Reprod. Dev. 74, 1538–47.CrossRefGoogle ScholarPubMed
Wang, K., Beyhan, Z., Rodriguez, R.M., Ross, P.J., Iager, A.E., Kaiser, G.G., Chen, Y. & Cibelli, J.B. (2009). Bovine ooplasm partially remodels primate somatic nuclei following somatic cell nuclear transfer. Cloning Stem Cells 11, 187202.CrossRefGoogle ScholarPubMed
Westhusin, M.E., Burghardt, R.C., Ruglia, J.N., Willingham, L.A., Liu, L., Shin, T., Howe, L.M. & Kraemer, D.C. (2001). Potential for cloning dogs. J. Reprod. Fertil. Suppl. 57, 287–93.Google ScholarPubMed
Yin, X.J., Lee, H.S., Yu, X.F., Choi, E., Koo, B.C., Kwon, M.S., Lee, Y.S., Cho, S.J., Jin, G.Z., Kim, L.H., Shin, H.D., Kim, T., Kim, N.H. & Kong, I.K. (2007). Generation of cloned transgenic cats expressing red fluorescence protein. Biol. Reprod. 78, 425–31.CrossRefGoogle ScholarPubMed
Zakhartchenko, V., Mueller, S., Alberio, R., Schernthaner, W., Stojkovic, M., Wenigerkind, H., Wanke, R., Lassnig, C., Mueller, M., Wolf, E. & Brem, G. (2001). Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Mol. Reprod. Dev. 60, 362–9.CrossRefGoogle ScholarPubMed