Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T07:45:02.276Z Has data issue: false hasContentIssue false

Morphometric of blastomeres in Salmo salar

Published online by Cambridge University Press:  18 March 2013

Brian R. Effer*
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
Rubén R. Sánchez
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
Andrea M. Ubilla
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
Elías V. Figueroa
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
Iván I. Valdebenito
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
*
All correspondence to: Brian R. Effer. Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile. E-mail: [email protected]

Summary

For Salmo salar, there is a lack of information on the morphology of the first blastomeres formed during embryonic development and which could be used as a diagnostic tool for the first stages of development. The purpose of this investigation, therefore, was to characterize morphometrically the first blastomeres of S. salar. From a pool of eggs incubated at 7.5°C, 100 microphotographs of blastodiscs were extracted and analyzed at different incubation periods: 12, 14, 16, 20 or 24 h. Blastodiscs were characterized morphologically after 16, 20 or 24 h incubation, and classified into symmetric or asymmetric groups according to their morphology. The ratio of length (L) versus width (W) of each blastomere was determined, to establish its symmetry. In addition, 20 microphotographs of blastodiscs of normal appearance were analysed morphologically (control blastodisc: CB) for comparison (20 or 24 h). Results show that the first cleavage ends after 16 h of development. Seven categories were established during blastomere characterization: 47% normal (G1); 27% with dispersed margins (G2); 10% unequal (G3); 9% ‘pie-shaped’ (G4); 3% amorphous (G5); 2% three equal blastomeres and one different one (G6); and 2% with eccentric cleavage (G7). Although the incidence of abnormal cleavage in S. salar is uncertain, there is a potential for some asymmetries to be corrected during embryogenesis to generate viable individuals. More studies are necessary to correlate these abnormal cleavage patterns with indicators of quality in the later stages of embryogenesis in this species, to establish a quality assessment tool for gametes and/or embryos in salmonid species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, M., Tero, A. & Kobayashi, R. (2010). A mathematical model of cleavage. J. Theor. Biol. 264, 8494.CrossRefGoogle ScholarPubMed
Avery, T. & Brown, J. (2005). Investigating the relationship among abnormal patterns of cell cleavage, egg mortality and early larval condition in Limanda ferruginea. J. Fish Biol. 67, 890–6.CrossRefGoogle Scholar
Avery, T., Killen, S. & Hollinger, T. (2009). The relationship of embryonic development, mortality, hatching success, and larval quality to normal or abnormal early embryonic cleavage in Atlantic cod, Gadus morhua. Aquaculture 289, 265–73.Google Scholar
Arrau, J., Roblero, L. & Cury, M. (1981). New observations on the onset and duration of the meiotic prophase in the female golden hamster (Mesocricetus auratus). J. Anat. 132, 627–33.Google ScholarPubMed
Balinsky, B. (1983). Introducción a la Embriología. Ediciones Omega S.A. Barcelona, 736 pp.Google Scholar
Ballard, W. (1973). Morphogenetic movements in Salmo gairdneri Richardson. J. Exp. Zool. 184, 2748.CrossRefGoogle Scholar
Ballard, W. (1985). Normal embryonic stages for salmonid fishes, base don Salmo gairdneri Richardson and Salvelinus fortinalis (Mitchill). J. Exp. Zool. 184, 726.Google Scholar
Billard, R. (1990). Culture of salmonids in fresh water. In Aquaculture vol. 2. (ed. Barnabé, G.). Ellis Horwood, England, pp. 549627.Google Scholar
Bobe, J. & Labbé, C. (2010). Egg and sperm quality in fish. Gen. Comp. Endocr. 165, 535–48.Google Scholar
Bromage, N., Bruce, M., Basavaraja, N. & Rana, K. (1994). Egg quality determinants in finfish: the role of overripening with special reference to the timing of stripping in the Atlantic halibut Hippoglossus hippoglossus. J. World Aquacult. Soc. 25, 1321.CrossRefGoogle Scholar
Effer, B., Sanchez, R., Ubilla, A., Figueroa, E. & Valdebenito, I. (2012). Study of the first blastomeres in coho salmon (Oncorhynchus kisutch). Zygote Epub ahead of print doi: 10.1017/S0967199412000202Google Scholar
Giménez, G., Estévez, A., Lahnsteiner, F., Zecevic, B., Bell, J., Henderson, R., Piñera, J. & Sanchez-Prado, J. (2006). Egg quality criteria in common dentex (Dentex dentex). Aquaculture 260, 232–43.CrossRefGoogle Scholar
Gorodilov, Y. (1996). Description of the early ontogeny of the Atlantic salmon, Salmon salar, with a novel system of interval (state) identification. Environ. Biol. Fish. 47, 109–27.Google Scholar
Hamoutene, D., Lush, L., Drover, D. & Walsh, A. (2009). Investigation of the temporal effects of spawning season and maternal and parental differences on egg quality in Atlantic cod Gadus morhua L. broodstock. Aquac. Res. 40, 1668–79.Google Scholar
Killeen, J., McLay, H. & Johnston, I. (1999). Development in Salmo trutta at different temperatures, with a quantitative scoring method for intraspecific comparisons. J. Fish Biol. 55, 382404.Google Scholar
Kjørsvik, E., Mangor-Jensen, A. & Holmefjord, I. (1990). Egg quality in fishes. Adv. Mar. Biol. 26, 71113.Google Scholar
Kjørsvik, E., Hoehne-Reitan, K. & Reitan, K.I. (2003). Egg and larval quality criteria as predictive measures for juvenile production in turbot (Scophthalmus maximus L.). Aquaculture 227, 920.Google Scholar
Kopsch, Fr. (1911). Die Entstehung des Dottersackentoblast und die Furchung bei der Forelle (Salmo fario). Archiv für Mikroskopische Anatomie 78, 618–59.Google Scholar
Kunz, Y. (2004). Developmental Biology of Teleost Fishes. Springer, The Netherlands, 638 pp.Google Scholar
Moran, D., Smith, C., Gara, B. & Poortenaar, C.W. (2007). Reproductive behaviour and early development in yellowtail kingfish (Seriola lalandi Valenciennes 1833). Aquaculture 262, 95104.Google Scholar
Pavlov, D. & Emel′yanova, N., (2008). Morphological criteria of egg quality in marine fishes: activation and cleavage of eggs of Zebrasoma scopas (Acanthuridae). J. Ichthyology 48, 533–48.Google Scholar
Pavlov, D. & Moksness, E. (1994). Reproductive biology, early ontogeny, and effect of temperature on development in wolfish: comparison with salmon. Aquacult. Int. 2, 133–53.Google Scholar
Penney, R., Lush, P., Wade, J., Brown, J., Parrish, C. & Burton, M. (2006). Comparative utility of egg blastomere morphology and lipid biochemistry for prediction of hatching success in Atlantic cod, Gadus morhua L. Aquac. Res. 37, 272–83.Google Scholar
Rani, M. (2005). Prediction of Larval Viability Based on Egg Quality Parameters and Early Cleavage Patterns in the Experiments of Triploidy Induction in Atlantic Cod, Gadus morhua L. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in International Fisheries Management. 64 pp. Norwegian College of Fishery Science, University of Tromso-Norway.Google Scholar
Shields, R., Brown, N. & Bromage, N. (1997). Blastomere morphology as a predictive measure of fish egg viability. Aquaculture 155, 112.Google Scholar
Sink, T. & Lochmann, R. (2008). Effects of dietary lipid source and concentration on canned catfish (Ictalurus punctatus) egg biochemical composition, egg and fry production, and egg and fry quality. Aquaculture 283, 6876.Google Scholar
Valdebenito, I., Sanchez, R., Effer, B. & Ubilla, A. (2012). Morphometric characterization of the first blastomeres of rainbow trout (Oncorhynchus mykiss). Zygote 20, 327–31.Google Scholar
Vassallo-Agius, R., Watanabe, T., Yoshizaki, G., Satoh, S. & Takeuchi, Y. (2001). Quality of eggs and spermatozoa of rainbow trout fed an n-3 essential fatty acid-deficient diet and its effects on the lipid and fatty acid components of eggs, semen and livers. Fish. Sci. 67, 818–27.Google Scholar
Vásquez, P., Llanos-Rivera, A. & Castro, L. (2010). Anormalidades durante el desarrollo embrionario de sardina común, Strangomera bentincki en el ambiente natural. Rev. Biol. Mar. Oceanogr. 45, 177–85.Google Scholar