Published online by Cambridge University Press: 10 June 2014
The aim of this study was to evaluate the dose–response effect of insulin, plus follicle-simulating hormone (FSH) at a fixed concentration, in a serum-free defined culture medium (DCM) on the in vitro maturation of bovine cumulus–oocyte complexes (COCs). For oocyte nuclear maturation, the expression levels of GDF9, GLUT1, PRDX1 and HSP70.1 transcripts related to oocyte and embryo developmental competence were analysed. For in vitro maturation (IVM), cumulus–oocyte complexes from slaughterhouse ovaries were distributed into four groups based on insulin concentration added to serum-free DCM, which was composed of alpha minimum essential medium (α-MEM), as basal medium: (1) DCM control: 0 ng/ml; (2) DCM1: 1 ng/ml; (3) DCM10: 10 ng/ml; and (4) DCM100: 100 ng/ml. After IVM, the nuclear status of a sample of oocytes was analysed and the other oocytes were submitted for in vitro fertilization (IVF) and in vitro culture (IVC). Different concentrations of insulin did not affect significantly the nuclear maturation and cleavage rate (72 h post-insemination) across all groups. Blastocyst rate (192 h post-insemination) did not differ in DCM control (24.3%), DCM1 (27.0%) and DCM10 (26.3%) groups, but the DCM100 (36.1%) group showed a greater blastocyst rate (P < 0.05) than the DCM control. Insulin concentrations of 1, 10, or 100 ng/ml decreased the relative levels of GDF9 and HSP70-1 transcripts in oocytes at the end of IVM (P < 0.05). The transcripts levels of PRDX1 decreased (P < 0.05) only when 10 or 100 ng/ml insulin was added to the DCM medium. No difference in levels of GLUT1 transcripts (P > 0.05) was observed at the different insulin concentrations. The results indicated that insulin added to DCM influenced levels of transcripts related to cellular stress (HSP70-1 and PRDX1) and oocyte competence (GDF9) in bovine oocytes and at higher concentrations enhanced blastocyst production.