Hostname: page-component-6587cd75c8-ptrpl Total loading time: 0 Render date: 2025-04-24T05:38:25.964Z Has data issue: false hasContentIssue false

Effects of different temperatures on the embryonic development of the Lebranche mullet Mugil liza

Published online by Cambridge University Press:  19 September 2024

João Vitor de Azevedo Manhães
Affiliation:
Laboratório de Piscicultura Marinha (LAPMAR), Departamento de Aquicultura, Centro de Ciências Agrárias (CCA), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brasil
Douglas da Cruz Mattos
Affiliation:
Instituto Federal do Espírito Santo – IFES, Piúma, Brasil
Rômulo Alves Strassburguer
Affiliation:
Laboratório de Piscicultura Marinha (LAPMAR), Departamento de Aquicultura, Centro de Ciências Agrárias (CCA), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brasil
Ulysses da Silva Palma
Affiliation:
Laboratório de Piscicultura Marinha (LAPMAR), Departamento de Aquicultura, Centro de Ciências Agrárias (CCA), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brasil
Fabio Carneiro Sterzelecki
Affiliation:
Laboratório de Piscicultura Marinha (LAPMAR), Departamento de Aquicultura, Centro de Ciências Agrárias (CCA), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brasil
Marco Shizuo Owatari*
Affiliation:
Laboratório de Cultivo de Algas (LCA), Departamento de Aquicultura, Centro de Ciências Agrárias (CCA), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brasil
Caio Magnotti
Affiliation:
Laboratório de Piscicultura Marinha (LAPMAR), Departamento de Aquicultura, Centro de Ciências Agrárias (CCA), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brasil
Vinicius Ronzani Cerqueira
Affiliation:
Laboratório de Piscicultura Marinha (LAPMAR), Departamento de Aquicultura, Centro de Ciências Agrárias (CCA), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brasil
*
Corresponding author: Marco Shizuo Owatari; Email: [email protected]

Summary

We herein investigated the influence of temperature on the embryonic development (from fertilisation to hatching) of Mugil liza larvae. For this purpose, oocytes (>600 μm) and sperm were obtained from breeding stock at the laboratory of marine fish culture (LAPMAR). After fertilisation, 1200 eggs were distributed in 12 cylindrical experimental units of 400 mL under four different temperatures 18, 22, 26 and 30 ºC, all in triplicate. Every 15 min until hatching, about 10 eggs were randomly sampled in each treatment. The eggs were visualized and photographed, and the classification of embryonic stages was performed. Temperature influenced the main events of the embryonic development of M. liza. More accelerated development was observed according to the increase in temperature until the gastrula phase. At temperatures of 22 and 26 °C, embryonic development occurred from fertilisation to hatching of the larvae. In the 18 °C treatment, it was verified that most of the embryos ceased development during the final phase of cleavage and the beginning of blastula formation, while in the 30 °C treatment patterns of embryo malformation were also verified, with erratic divisions of the blastomeres, resulting in irregular cells. Unlike what was observed at a temperature of 18 °C, none of the embryos incubated at 30 °C reached the blastopore closure phase, stopping in the gastrula. The larvae hatched in the treatments at 22 and 26 °C were viable and exhibited intense swimming, with a large amount of reserve material (yolk) and an evident drop of oil.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abram, P.K., Boivin, G., Moiroux, J. and Brodeur, J. (2017) Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biological Reviews 92, 18591876. https://doi.org/10.1111/brv.12312.CrossRefGoogle ScholarPubMed
Alfonso, S., Gesto, M. and Sadoul, B. (2021) Temperature increase and its effects on fish stress physiology in the context of global warming. Journal of Fish Biology 98, 14961508. https://doi.org/10.1111/jfb.14599.CrossRefGoogle ScholarPubMed
Angelo, M., Lisboa, M.K., Magnotti, C.C.F., Pilotto, M.R., Mattos, J.J. and Cerqueira, V.R. (2021a) Temperature influence on the embryogenesis, survival and initial development of Mugil liza larvae. Aquaculture Research 52, 37053712. https://doi.org/10.1111/are.15215.CrossRefGoogle Scholar
Angelo, M., Lisboa, M.K., Magnotti, C., Pilotto, M.R., Mattos, J.J. and Cerqueira, V. R. (2021b) Temperature influence on the initial development of Sardinella brasiliensis larvae. Aquaculture Research 52, 64976503. https://doi.org/10.1111/are.15517.CrossRefGoogle Scholar
Asche, F. (2008) Farming the sea. Marine Resource Economics 23, 527547. https://doi.org/10.1086/Mre.23.4.42629678.CrossRefGoogle Scholar
Baldisserotto, B. and Val, A.L. (2002) Ion fluxes of Metynnis hypsauchen, a teleost from the Rio Negro, Amazon, exposed to an increase of temperature. Brazilian Journal of Biology 62, 749752. https://doi.org/10.1590/S1519-69842002000500003.CrossRefGoogle Scholar
Boltaña, S., Sanhueza, N., Aguilar, A., Gallardo-Escarate, C., Arriagada, G., Valdes, J. A., Soto, D. and Quiñones, R. A. (2017) Influences of thermal environment on fish growth. Ecology and Evolution 7, 68146825. https://doi.org/10.1002/ece3.3239.CrossRefGoogle ScholarPubMed
Bone, Q. and Moore, R. (2008) Biology of Fishes. 3rd ed. Chatham, Kent, UK: Taylor & Francis, 497p.CrossRefGoogle Scholar
Carvalho, C.V.D., Bianchini, A., Tesser, M.B. and Sampaio, L.A. (2010) The effect of protein levels on growth, postprandial excretion and tryptic activity of juvenile mullet Mugil platanus (Günther). Aquaculture Research 41, 511518. https://doi.org/10.1111/j.1365-2109.2009.02340.x.CrossRefGoogle Scholar
Castro, J., Magnotti, C., Angelo, M., Sterzelecki, F., Pedrotti, F., Oliveira, M.F., Soligo, T., Fracalossi, D. and Cerqueira, V.R. (2019) Effect of ascorbic acid supplementation on zootechnical performance, haematological parameters and sperm quality of lebranche mullet Mugil liza . Aquaculture Research 50, 32673274. https://doi.org/10.1111/are.14284.CrossRefGoogle Scholar
Cavalli, R.O. and Hamilton, S. (2007) A piscicultura marinha no Brasil - Afinal, quais as espécies boas para cultivar? Panorama da Aquicultura 17, 5055.Google Scholar
Cerqueira, V.R., Carvalho, C.V.C., Sanches, E.G., Passini, G., Baloi, M. and Rodrigues, R.V. (2017) Broodstock management and control of reproduction in marine fishes of the Brazilian coast. Revista Brasileira de Reprodução Animal 41, 94102.Google Scholar
Ciannelli, L., Smith, E., Kearney, K., Hunsicker, M. and McGilliard, C. (2022). Greater exposure of nearshore habitats in the Bering Sea makes fish early life stages vulnerable to climate change. Marine Ecology Progress Series 684, 91102. https://doi.org/10.3354/meps13977.CrossRefGoogle Scholar
Clarkson, M., Taylor, J.F., McStay, E., Palmer, M.J., Clokie, B.G.J. and Migaud, H. (2021) A temperature shift during embryogenesis impacts prevalence of deformity in diploid and triploid Atlantic salmon (Salmo salar L.). Aquaculture Research 52, 906923. https://doi.org/10.1111/are.14945.CrossRefGoogle Scholar
Donaldson, M.R., Cooke, S.J., Patterson, D.A. and Macdonald, J.S. (2008) Cold shock and fish. Journal of Fish Biology 73, 14911530. https://doi.org/10.1111/j.1095-8649.2008.02061.x.CrossRefGoogle Scholar
FAO. (2022) The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome: FAO. https://doi.org/10.4060/cc0461en.Google Scholar
Føre, H.M., Thorvaldsen, T., Osmundsen, T.C., Asche, F., Tveterås, R., Fagertun, J.T. and Bjelland, H.V. (2022) Technological innovations promoting sustainable salmon (Salmo salar) aquaculture in Norway. Aquaculture Reports 24, 101115. https://doi.org/10.1016/j.aqrep.2022.101115.CrossRefGoogle Scholar
Fujimoto, T., Kataoka, T., Sakao, S., Saito, T., Yamaha, E. and Arai, K. (2006) Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus). Zoological Science 23, 977989. https://doi.org/10.2108/zsj.23.977.CrossRefGoogle ScholarPubMed
Gluckmann, I., Huriaux, F., Focant, B. and Vandewalle, P. (1999) Postembryonic development of the cephalic skeleton in Dicentrarchus labrax (Pisces, Perciformes, Serranidae). Bulletin of Marine Science 65, 1136.Google Scholar
Herbing, I.H.V. (2002). Effects of temperature on larval fish swimming performance: the importance of physics to physiology. Journal of Fish Biology 61, 865876. https://doi.org/10.1111/j.1095-8649.2002.tb01848.x.CrossRefGoogle Scholar
Jonsson, B. and Jonsson, N. (2014) Early environment influences later performance in fishes. Journal of Fish Biology 85, 151188. https://doi.org/10.1111/jfb.12432.CrossRefGoogle ScholarPubMed
Jonsson, B. and Jonsson, N. (2019) Phenotypic plasticity and epigenetics of fish: embryo temperature affects later-developing lift-history traits. Aquatic Biology 28, 2132. https://doi.org/10.3354/ab00707.CrossRefGoogle Scholar
Kaneko, N., Ishikawa, T. and Nomura, K. (2023) Effects of the short-term fasting and refeeding on growth-related genes in Japanese eel (Anguilla japonica) larvae. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 265, 110826. https://doi.org/10.1016/j.cbpb.2023.110826.CrossRefGoogle ScholarPubMed
Karås, P. and Klingsheim, V. (1997) Effects of temperature and salinity on embryonic development of turbot (Scophthalmus maximus L.) from the North Sea, and comparisons with Baltic populations. Helgoländer Meeresuntersuchungen 51, 241247. https://doi.org/10.1007/BF02908710.CrossRefGoogle Scholar
Koumoundouros, G. (1996) Embryonic and yolk-sac larval development of Dentex dentex Linnaeus 1758 (Osteichthyes, Sparidae). Marine Life 6, 4150.Google Scholar
Kucharczyk, D., Luczynski, M., Kujawa, R. and Czerkies, P. (1997) Effect of temperature on embryonic and larval development of bream (Abramis brama L.). Aquatic Sciences 59, 214224. https://doi.org/10.1007/BF02523274.Google Scholar
Lemos, V.M., Varela, A.S. Jr, Schwingel, P.R., Muelbert, J.H. and Vieira, J.P. (2014) Migration and reproductive biology of Mugil liza (Teleostei: Mugilidae) in south Brazil. Journal of Fish Biology 85, 671687. https://doi.org/10.1111/jfb.12452.CrossRefGoogle ScholarPubMed
Lemos, V.M., Monteiro-Neto, C., Cabral, H.and Vieira, J.P. (2017). Stock identification of tainha (Mugil liza) by analyzing stable carbon and oxygen isotopes in otoliths. Fishery Bulletin 115, 201206. Gale Academic OneFile, link.gale.com/apps/doc/A494498516/AONE?u=anon∼f3930e6&sid=googleScholar&xid=b8e78c28 (accessed 4 September 2023).CrossRefGoogle Scholar
Lisboa, V., Barcarolli, I.F., Sampaio, L.A. and Bianchini, A. (2015) Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranche mullet Mugil liza (Perciformes: Mugilidae). Neotropical Ichthyology 13, 447452. https://doi.org/10.1590/1982-0224-20140122.CrossRefGoogle Scholar
Magnotti, C.C., Cipriano, F.D.S., Pedrotti, F.S. and Cerqueira, V.R. (2020) Advances in reproduction of the lebranche mullet Mugil liza: maturation and spawning of f1 breeders in captivity. Boletim do Instituto de Pesca 46. https://doi.org/10.20950/1678-2305.2020.46.3.586.CrossRefGoogle Scholar
Mai, A.C., Mino, C.I., Marins, L.F., Monteiro-Neto, C., Miranda, L., Schwingel, P.R., Lemos, V.M., Gonzalez-Castro, M., Castello, J.P. and Vieira, J.P. (2014) Microsatellite variation and genetic structuring in Mugil liza (Teleostei: Mugilidae) populations from Argentina and Brazil. Estuarine, Coastal and Shelf Science 149, 8086. https://doi.org/10.1016/j.ecss.2014.07.013.CrossRefGoogle Scholar
Martell, D.J., Kieffer, J.D. and Trippel, E.A. (2005) Effects of temperature during early life history on embryonic and larval development and growth in haddock. Journal of Fish Biology 66, 15581575. https://doi.org/10.1111/j.0022-1112.2005.00699.x.CrossRefGoogle Scholar
Mendonça, R.C., Ikebata, S.P., Araújo-Silva, S.L., Manhães, J.V.A. and Tsuzuki, M.Y. (2020) Thermal influence on the embryonic development and hatching rate of the flameback pygmy angelfish Centropyge aurantonotus eggs. Zygote 28, 8082. https://doi.org/10.1017/S096719941900056X.CrossRefGoogle ScholarPubMed
Morado, C.N., de Andrade-Tubino, M.F. and Araújo, F.G. (2021) Local ecological knowledge indicates: There is another breeding period in the summer for the mullet Mugil liza in a Brazilian tropical bay. Ocean & Coastal Management 205, 105569. https://doi.org/10.1016/j.ocecoaman.2021.105569.CrossRefGoogle Scholar
Motta, J.H.S., Glória, L.S., Radael, M.C., Mattos, D.C., Cardoso, L.D. and Vidal-Júnior, M.V. (2023) Effect of temperature on embryonic development and first exogenous feeding of goldfish Carassius auratus (Linnaeus, 1758). Brazilian Journal of Biology 83, e270943. https://doi.org/10.1590/1519-6984.270943.CrossRefGoogle ScholarPubMed
Neu, D.H., Honorato, C.A. and Lewandowski, V. (2019) Marine fish breeding in Brazil-A potential activity in the dormant stage. Advances in Oceanography & Marine Biology 1, AOMB. MS. ID, 508. http://dx.doi.org/10.33552/AOMB.2019.01.000507.CrossRefGoogle Scholar
Okamoto, M.H. (2004) Efeito da temperatura sobre ovos e larvas de linguado (Paralychythys Orbignianus). (Masters thesis). Universidade Federal Do Rio Grande – FURG Library. Available at https://argo.furg.br/?BDTD96 Google Scholar
Okamoto, M.H., Sampaio, L.A.N.D. and Maçada, A.D.P. (2006) Efeito da temperatura sobre o crescimento e a sobrevivência de juvenis da tainha Mugil platanus Günther, 1880. Atlântica, Rio Grande 28, 6166.Google Scholar
Owatari, M.S., Magnotti, C., Vargas, J.H., de Carvalho, C.V.A., Sterzelecki, F.C. and Cerqueira, V.R. (2023) Influence of salinity on growth and survival of juvenile Sardinella brasiliensis . Boletim do Instituto de Pesca, 49. https://doi.org/10.20950/1678-2305/bip.2023.49.e808.Google Scholar
Petereit, C., Haslob, H., Kraus, G. and Clemmesen, C. (2008). The influence of temperature on the development of Baltic Sea sprat (Sprattus sprattus) eggs and yolk sac larvae. Marine Biology 154, 295306. https://doi.org/10.1007/s00227-008-0923-1.CrossRefGoogle Scholar
Pörtner, H.O. and Peck, M.A. (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. Journal of Fish Biology 77, 17451779. https://doi.org/10.1111/j.1095-8649.2010.02783.x.CrossRefGoogle ScholarPubMed
Rijnsdorp, A.D., Peck, M.A., Engelhard, G.H., Möllmann, C. and Pinnegar, J.K. (2009) Resolving the effect of climate change on fish populations. ICES Journal of Marine Science 66, 15701583. https://doi.org/10.1093/icesjms/fsp056.CrossRefGoogle Scholar
Rønnestad, I., Yufera, M., Ueberschär, B., Ribeiro, L., Sæle, Ø. and Boglione, C. (2013) Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Reviews in Aquaculture 5, S59S98. https://doi.org/10.1111/raq.12010.CrossRefGoogle Scholar
Silva, E.C.D., Sterzelecki, F.C., Alves Musialak, L., Sugai, J.K., Castro, J.D.J.P., Pedrotti, F.S., Magnotti, C., Cipriano, F.D.S. and Cerqueira, V.R. (2020) Effect of feeding frequency on growth performance, blood metabolites, proximate composition and digestive enzymes of Lebranche mullet (Mugil liza) juveniles. Aquaculture Research 51, 11621169. https://doi.org/10.1111/are.14466.CrossRefGoogle Scholar
Valenti, W.C., Barros, H.P., Moraes-Valenti, P., Bueno, G.W. and Cavalli, R.O. (2021) Aquaculture in Brazil: past, present and future. Aquaculture Reports, 19, 100611. https://doi.org/10.1016/j.aqrep.2021.100611.CrossRefGoogle Scholar
Yang, Q., Ma, Z., Zheng, P., Jiang, S., Qin, J.G. and Zhang, Q. (2016) Effect of temperature on growth, survival and occurrence of skeletal deformity in the golden pompano Trachinotus ovatus larvae. Indian Journal of Fisheries 63, 7482. https://doi.org/10.21077/ijf.2016.63.1.51490-10.CrossRefGoogle Scholar
Whitfield, A.K. (1990). Life-history styles of fishes in South African estuaries. Environmental Biology of Fishes 28, 295308. https://doi.org/10.1007/BF00751043.CrossRefGoogle Scholar
Supplementary material: File

Manhães et al. supplementary material

Manhães et al. supplementary material
Download Manhães et al. supplementary material(File)
File 2.7 MB