Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T09:29:13.192Z Has data issue: false hasContentIssue false

Effect of transfection and co-incubation of bovine sperm with exogenous DNA on sperm quality and functional parameters for its use in sperm-mediated gene transfer

Published online by Cambridge University Press:  08 December 2016

María Elena Arias
Affiliation:
Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile. Department of Agricultural Production; and Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Montevideo Temuco, Chile.
Esther Sánchez-Villalba
Affiliation:
Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.
Andrea Delgado
Affiliation:
Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.
Ricardo Felmer*
Affiliation:
Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Department of Agricultural Production; and Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Montevideo 0870, P.O. Box 54-D, Temuco, Chile.
*
All correspondence to: Ricardo Felmer. Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Department of Agricultural Production; and Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Montevideo 0870, P.O. Box 54-D, Temuco, Chile. Tel: +56 45 2325591. E-mail: [email protected]

Summary

Sperm-mediated gene transfer (SMGT) is based on the capacity of sperm to bind exogenous DNA and transfer it into the oocyte during fertilization. In bovines, the progress of this technology has been slow due to the poor reproducibility and efficiency of the production of transgenic embryos. The aim of the present study was to evaluate the effects of different sperm transfection systems on the quality and functional parameters of sperm. Additionally, the ability of sperm to bind and incorporate exogenous DNA was assessed. These analyses were carried out by flow cytometry and confocal fluorescence microscopy, and motility parameters were also evaluated by computer-assisted sperm analysis (CASA). Transfection was carried out using complexes of plasmid DNA with Lipofectamine, SuperFect and TurboFect for 0.5, 1, 2 or 4 h. The results showed that all of the transfection treatments promoted sperm binding and incorporation of exogenous DNA, similar to sperm incorporation of DNA alone, without affecting the viability. Nevertheless, the treatments and incubation times significantly affected the motility parameters, although no effect on the integrity of DNA or the levels of reactive oxygen species (ROS) was observed. Additionally, we observed that transfection using SuperFect and TurboFect negatively affected the acrosome integrity, and TurboFect affected the mitochondrial membrane potential of sperm. In conclusion, we demonstrated binding and incorporation of exogenous DNA by sperm after transfection and confirmed the capacity of sperm to spontaneously incorporate exogenous DNA. These findings will allow the establishment of the most appropriate method [intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF)] of generating transgenic embryos via SMGT based on the fertilization capacity of transfected sperm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguila, L., Arias, M.E., Vargas, T., Zambrano, F. & Felmer, R. (2015). Methyl-beta-cyclodextrin improves sperm capacitation status assessed by flow cytometry analysis and zona pellucida-binding ability of frozen/thawed bovine spermatozoa. Reprod. Domest. Anim. 50, 931–8.CrossRefGoogle ScholarPubMed
Alderson, J., Wilson, B., Laible, G., Pfeffer, P. & L'Huillier, P. (2006). Protamine sulfate protects exogenous DNA against nuclease degradation but is unable to improve the efficiency of bovine sperm-mediated transgenesis. Anim. Reprod. Sci. 91, 2330.CrossRefGoogle ScholarPubMed
Anzar, M. & Buhr, M.M. (2006). Spontaneous uptake of exogenous DNA by bull spermatozoa. Theriogenology 65, 683–90.CrossRefGoogle ScholarPubMed
Arias, M.E., Sanchez, R., Risopatron, J., Perez, L. & Felmer, R. (2014). Effect of sperm pretreatment with sodium hydroxide and dithiothreitol on the efficiency of bovine intracytoplasmic sperm injection. Reprod. Fertil. Dev. 26, 847–54.CrossRefGoogle ScholarPubMed
Bevacqua, R.J., Pereyra-Bonnet, F., Fernandez-Martin, R. & Salamone, D.F. (2010). High rates of bovine blastocyst development after ICSI-mediated gene transfer assisted by chemical activation. Theriogenology 74, 922–31.CrossRefGoogle ScholarPubMed
Bolanos, B., Bodon, Q., Jimenez, T., Garcia-Mayol, D., Lavergne, J.A. & Diaz, A.M. (1988). Analysis by fluorescence microscopy and flow cytometry of monoclonal antibodies produced against cell surface antigens. PR Health Sci. J. 7, 35–8.Google ScholarPubMed
Brackett, B.G., Baranska, W., Sawicki, W. & Koprowski, H. (1971). Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proc. Natl. Acad. Sci. USA 68, 353–7.CrossRefGoogle ScholarPubMed
Campos, V.F., de Leon, P.M., Komninou, E.R., Dellagostin, O.A., Deschamps, J.C., Seixas, F.K. & Collares, T. (2011). NanoSMGT: transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency. Theriogenology 76, 1552–60.CrossRefGoogle ScholarPubMed
Canovas, S., Gutierrez-Adan, A. & Gadea, J. (2010). Effect of exogenous DNA on bovine sperm functionality using the sperm mediated gene transfer (SMGT) technique. Mol. Reprod. Dev. 77, 687–98.CrossRefGoogle ScholarPubMed
Carrell, D.T., Emery, B.R. & Hammoud, S. (2007). Altered protamine expression and diminished spermatogenesis: what is the link? Hum. Reprod. Update 13, 313–27.CrossRefGoogle ScholarPubMed
Cavalcanti, P.V., Milazzotto, M.P., Simoes, R., Nichi, M., de Oliveira Barros, F.R., Visintin, J.A. & Assumpcao, M.E. (2016). Cell viability of bovine spermatozoa subjected to DNA electroporation and DNase I treatment. Theriogenology 85, 1312–22.CrossRefGoogle ScholarPubMed
Chan, A.W., Luetjens, C.M. & Schatten, G.P. (2000). Sperm-mediated gene transfer. Curr. Top. Dev. Biol. 50, 89102.CrossRefGoogle ScholarPubMed
Chang, K., Qian, J., Jiang, M., Liu, Y.H., Wu, M.C., Chen, C.D., Lai, C.K., Lo, H.L., Hsiao, C.T., Brown, L., Bolen, J. Jr., Huang, H.I., Ho, P.Y., Shih, P.Y., Yao, C.W., Lin, W.J., Chen, C.H., Wu, F.Y., Lin, Y.J., Xu, J. & Wang, K. (2002). Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnol. 2, 5.CrossRefGoogle ScholarPubMed
Eghbalsaied, S., Ghaedi, K., Laible, G., Hosseini, S. M., Forouzanfar, M., Hajian, M., Oback, F., Nasr-Esfahani, M.H. & Oback, B. (2013). Exposure to DNA is insufficient for in vitro transgenesis of live bovine sperm and embryos. Reproduction 145, 97108.CrossRefGoogle ScholarPubMed
Feitosa, W.B., Mendes, C.M., Milazzotto, M.P., Rocha, A.M., Martins, L.F., Simoes, R., Paula-Lopes, F.F., Visintin, J.A. & Assumpcao, M.E. (2010). Exogenous DNA uptake by bovine spermatozoa does not induce DNA fragmentation. Theriogenology 74, 563–8.CrossRefGoogle Scholar
Francolini, M., Lavitrano, M., Lamia, C.L., French, D., Frati, L., Cotelli, F. & Spadafora, C. (1993). Evidence for nuclear internalization of exogenous DNA into mammalian sperm cells. Mol. Reprod. Dev. 34, 133–9.CrossRefGoogle ScholarPubMed
Garcia-Vazquez, F.A., Ruiz, S., Matas, C., Izquierdo-Rico, M.J., Grullon, L.A., De Ondiz, A., Vieira, L., Aviles-Lopez, K., Gutierrez-Adan, A. & Gadea, J. (2010). Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA. Reproduction 140, 259–72.CrossRefGoogle ScholarPubMed
Harel-Markowitz, E., Gurevich, M., Shore, L.S., Katz, A., Stram, Y. & Shemesh, M. (2009). Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone. Biol. Reprod. 80, 1046–52.CrossRefGoogle ScholarPubMed
Hoelker, M., Mekchay, S., Schneider, H., Bracket, B.G., Tesfaye, D., Jennen, D., Tholen, E., Gilles, M., Rings, F., Griese, J. & Schellander, K. (2007). Quantification of DNA binding, uptake, transmission and expression in bovine sperm mediated gene transfer by RT-PCR: effect of transfection reagent and DNA architecture. Theriogenology 67, 1097–107.CrossRefGoogle ScholarPubMed
Jenson, H.B., Grant, G.M., Ench, Y., Heard, P., Thomas, C.A., Hilsenbeck, S.G. & Moyer, M.P. (1998). Immunofluorescence microscopy and flow cytometry characterization of chemical induction of latent Epstein-Barr virus. Clin. Diagn. Lab. Immunol. 5, 91–7.CrossRefGoogle ScholarPubMed
Kasai, T., Ogawa, K., Mizuno, K., Nagai, S., Uchida, Y., Ohta, S., Fujie, M., Suzuki, K., Hirata, S. & Hoshi, K. (2002). Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian J. Androl. 4, 97103.Google ScholarPubMed
Kroemer, G., Zamzami, N. & Susin, S.A. (1997). Mitochondrial control of apoptosis. Immunol. Today 18, 4451.CrossRefGoogle ScholarPubMed
Kues, W.A. & Niemann, H. (2004). The contribution of farm animals to human health. Trends Biotechnol. 22, 286–94.CrossRefGoogle ScholarPubMed
Lai, L., Sun, Q., Wu, G., Murphy, C.N., Kuhholzer, B., Park, K.W., Bonk, A.J., Day, B.N. & Prather, R.S. (2001). Development of porcine embryos and offspring after intracytoplasmic sperm injection with liposome transfected or non-transfected sperm into in vitro matured oocytes. Zygote 9, 339–46.CrossRefGoogle ScholarPubMed
Lavitrano, M., Camaioni, A., Fazio, V.M., Dolci, S., Farace, M.G. & Spadafora, C. (1989). Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57, 717–23.CrossRefGoogle ScholarPubMed
Lavitrano, M., French, D., Zani, M., Frati, L. & Spadafora, C. (1992). The interaction between exogenous DNA and sperm cells. Mol. Reprod. Dev. 31, 161–9.CrossRefGoogle ScholarPubMed
Lavitrano, M., Maione, B., Forte, E., Francolini, M., Sperandio, S., Testi, R. & Spadafora, C. (1997). The interaction of sperm cells with exogenous DNA: a role of CD4 and major histocompatibility complex class II molecules. Exp. Cell Res. 233, 5662.CrossRefGoogle ScholarPubMed
Lavitrano, M., Forni, M., Bacci, M. L., Di Stefano, C., Varzi, V., Wang, H. & Seren, E. (2003). Sperm mediated gene transfer in pig: Selection of donor boars and optimization of DNA uptake. Mol. Reprod. Dev. 64, 284–91.CrossRefGoogle ScholarPubMed
Lavitrano, M., Busnelli, M., Cerrito, M.G., Giovannoni, R., Manzini, S. & Vargiolu, A. (2006). Sperm-mediated gene transfer. Reprod. Fertil. Dev. 18, 1923.CrossRefGoogle ScholarPubMed
Li, C., Mizutani, E., Ono, T. & Wakayama, T. (2010). An efficient method for generating transgenic mice using NaOH-treated spermatozoa. Biol. Reprod. 82, 331–40.CrossRefGoogle ScholarPubMed
Li, Y., Kalo, D., Zeron, Y. & Roth, Z. (2016). Progressive motility – a potential predictive parameter for semen fertilization capacity in bovines. Zygote 24, 7082.CrossRefGoogle ScholarPubMed
Maione, B., Pittoggi, C., Achene, L., Lorenzini, R. & Spadafora, C. (1997). Activation of endogenous nucleases in mature sperm cells upon interaction with exogenous DNA. DNA Cell. Biol. 16, 1087–97.CrossRefGoogle ScholarPubMed
Maione, B., Lavitrano, M., Spadafora, C. & Kiessling, A.A. (1998). Sperm-mediated gene transfer inmice. Mol. Reprod. Dev. 50, 406–9.3.0.CO;2-M>CrossRefGoogle Scholar
Moreira, P.N., Giraldo, P., Cozar, P., Pozueta, J., Jimenez, A., Montoliu, L. & Gutierrez-Adan, A. (2004). Efficient generation of transgenic mice with intact yeast artificial chromosomes by intracytoplasmic sperm injection. Biol. Reprod. 71, 1943–7.CrossRefGoogle ScholarPubMed
Osada, T., Toyoda, A., Moisyadi, S., Akutsu, H., Hattori, M., Sakaki, Y. & Yanagimachi, R. (2005). Production of inbred and hybrid transgenic mice carrying large (>200 kb) foreign DNA fragments by intracytoplasmic sperm injection. Mol. Reprod. Dev. 72, 329–35.CrossRefGoogle ScholarPubMed
Paoli, D., Gallo, M., Rizzo, F., Baldi, E., Francavilla, S., Lenzi, A., Lombardo, F. & Gandini, L. (2011). Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 95, 2315–9.CrossRefGoogle ScholarPubMed
Parrish, J. J., Krogenaes, A. & Susko-Parrish, J. L. (1995). Effect of bovine sperm separation by either swim-up or Percoll method on success of in vitro fertilization and early embryonic development. Theriogenology 44, 859–69.CrossRefGoogle ScholarPubMed
Perry, A.C., Wakayama, T., Kishikawa, H., Kasai, T., Okabe, M., Toyoda, Y. & Yanagimachi, R. (1999). Mammalian transgenesis by intracytoplasmic sperm injection. Science 284, 1180–3.CrossRefGoogle ScholarPubMed
Rieth, A., Pothier, F. & Sirard, M.A. (2000). Electroporation of bovine spermatozoa to carry DNA containing highly repetitive sequences into oocytes and detection of homologous recombination events. Mol. Reprod. Dev. 57, 338–45.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Shemesh, M., Gurevich, M., Harel-Markowitz, E., Benvenisti, L., Shore, L.S. & Stram, Y. (2000). Gene integration into bovine sperm genome and its expression in transgenic offspring. Mol. Reprod. Dev. 56, 306–8.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Smith, K.R. (2002). The role of sperm-mediated gene transfer in genome mutation and evolution. Med. Hypotheses 59, 433–7.CrossRefGoogle ScholarPubMed
Smith, K.R. (2012). Sperm-mediated Gene Transfer: Concepts and Controversies. Beijing, China: Bentham eBooks.Google Scholar
Smith, K. & Spadafora, C. (2005). Sperm-mediated gene transfer: applications and implications. Bioessays 27, 551–62.CrossRefGoogle Scholar
Soboleski, M.R., Oaks, J. & Halford, W.P. (2005). Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J. 19, 440–2.CrossRefGoogle ScholarPubMed
Spadafora, C. (1998). Sperm cells and foreign DNA: a controversial relation. Bioessays 20, 955–64.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Sparrow, D.B., Latinkic, B. & Mohun, T.J. (2000). A simplified method of generating transgenic Xenopus . Nucleic Acids Res. 28, E12.CrossRefGoogle ScholarPubMed
Suarez, S.S. & Dai, X. (1992). Hyperactivation enhances mouse sperm capacity for penetrating viscoelastic media. Biol. Reprod. 46, 686–91.CrossRefGoogle ScholarPubMed
Takeda, K., Uchiyama, K., Kinukawa, M., Tagami, T., Kaneda, M. & Watanabe, S. (2015). Evaluation of sperm DNA damage in bulls by TUNEL assay as a parameter of semen quality. J. Reprod. Dev. 61, 185–90.CrossRefGoogle ScholarPubMed
Visconti, P.E., Stewart-Savage, J., Blasco, A., Battaglia, L., Miranda, P., Kopf, G.S. & Tezon, J.G. (1999). Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Biol. Reprod. 61, 7684.CrossRefGoogle ScholarPubMed
Wall, R.J. (2002). New gene transfer methods. Theriogenology 57, 189201.CrossRefGoogle ScholarPubMed
Yin, J., Zhang, J. J., Shi, G. G., Xie, S. F., Wang, X. F. & Wang, H. L. (2009). Sperm mediated human coagulation factor VIII gene transfer and expression in transgenic mice. Swiss Med. Wkly 139, 364–72.Google ScholarPubMed
Zani, M., Lavitrano, M., French, D., Lulli, V., Maione, B., Sperandio, S. & Spadafora, C. (1995). The mechanism of binding of exogenous DNA to sperm cells: factors controlling the DNA uptake. Exp. Cell Res. 217, 5764.CrossRefGoogle ScholarPubMed