Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T01:58:12.841Z Has data issue: false hasContentIssue false

Effect of guaianolides in the meiosis reinitiation of amphibian oocytes

Published online by Cambridge University Press:  03 November 2016

J. Zapata-Martínez*
Affiliation:
Departamento de Biología del Desarrollo, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, Argentina.
G. Sánchez-Toranzo
Affiliation:
Departamento de Biología del Desarrollo, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, Argentina.
F. Chaín
Affiliation:
INSIBIO-CONICET, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, Tucumán, Argentina.
C.A.N. Catalán
Affiliation:
INQUINOA-CONICET, Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, San Miguel de Tucumán, Argentina.
M.I. Bühler
Affiliation:
Departamento de Biología del Desarrollo, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, Argentina.
*
All correspondence to: José Zapata-Martínez. Departamento de Biología del Desarrollo, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán (T4000INI), Argentina. Fax: +54 381 4248025. E-mail: [email protected]

Summary

Sesquiterpene lactones (STLs) are a large and structurally diverse group of plant metabolites generally found in the Asteraceae family. STLs exhibit a wide spectrum of biological activities and it is generally accepted that their major mechanism of action is the alkylation of the thiol groups of biological molecules. The guaianolides is one of various groups of STLs. Anti-tumour and anti-migraine effects, an allergenic agent, an inhibitor of smooth muscle cells and of meristematic cell proliferation are only a few of the most commonly reported activities of STLs. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under stimulus with progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. There are previous records of the inhibitory effect of dehydroleucodin (DhL), a guaianolide lactone, on the progression of meiosis. It has been also shown that DhL and its 11,13-dihydroderivative (2H-DhL; a mixture of epimers at C-11) act as blockers of the resumption of meiosis in fully grown ovarian oocytes from the amphibian Rhinella arenarum (formerly classified as Bufo arenarum). The aim of this study was to analyze the effect of four closely related guaianolides, i.e., DhL, achillin, desacetoxymatricarin and estafietin as possible inhibitors of meiosis in oocytes of amphibians in vitro and discuss some structure–activity relationships. It was found that the inhibitory effect on meiosis resumption is greater when the lactone has two potentially reactive centres, either a α,β–α′,β′-diunsaturated cyclopentanone moiety or an epoxide group plus an exo-methylene-γ-lactone function.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Catalán, J., Marcial, G., Schuff, C., Perotti, M. & Catalán, C. (2007). Composición química y actividad antioxidante del aceite esencial y extractos de Artemisia copa . Bol. Latinoam. Caribe Plant. Med. Aromaticas 6, 238–9.Google Scholar
Cruzado, M., Castro, C., Fernández, D., Gómez, L, Roque, M., Giordano, O.E. & López, L.A. (2005). Dehydroleucodine inhibits vascular smooth muscle cell proliferation in G2 phase. Cell Mol. Biol. 51, 525–30.Google ScholarPubMed
De Heluani, C.S., de Lampasona, M.P., Catalán, C.A.N., Goedken, V.L., Gutiérrez, A.B. & Herz, W. (1989). Guaianolides, heliangolides and other constituents from Stevia alpina . Phytochemistry 28, 1931–5.CrossRefGoogle Scholar
Dekel, N. (2005). Cellular biochemical and molecular mechanisms regulating oocytes maturation. Mol. Cell. Endocrinol. 234, 1925.CrossRefGoogle Scholar
Duckworth, B.C., Weaver, J.S. & Ruderman, J.V. (2002). G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc. Natl. Acad. Sci. USA. 99, 16794–9.CrossRefGoogle ScholarPubMed
Fortune, J.E., Concannon, P.W. & Hansel, W. (1975). Ovarian progesterone levels during in vitro oocyte maturation and ovulation in Xenopus laevis . Biol. Reprod. 13, 561–7.CrossRefGoogle ScholarPubMed
Furuno, N., Kawasaki, A. & Sagata, N. (2003). Expression of cell-cycle regulators during Xenopus oogenesis. Gene Expr. Patterns 3, 165–8.CrossRefGoogle ScholarPubMed
Galvis, A., Marcano, A., Stefancin, C., Villaverde, N., Priestap, H., Tonn, C., Lopez, L. & Barbieri, M. (2011). The effect of dehydroleucodine in adipocyte differentiation. Eur. J. Pharmacol. 671, 1825.CrossRefGoogle ScholarPubMed
Ghantous, A., Gali-Muhtasib, H., Vuorela, H., Najat, A., Saliba, N.A. & Darwiche, N. (2010).What made sesquiterpene lactones reach cancer clinical trials? Drug Discovery Today 15, 15–6.CrossRefGoogle ScholarPubMed
Giordano, O.S., Guerreiro, E., Pestchanker, M.J., Guzman, J., Pastor, D. & Guardia, T. (1990). The gastric cytoprotective effect of several sesquiterpene lactones. J. Nat. Prod. 53, 803–9.CrossRefGoogle ScholarPubMed
Giordano, O.S., Pestchanker, M.J., Guerreiro, E., Saad, J.R., Enriz, R.D., Rodriguez, A.M., Jauregui, E.A., Guzman, J. & Maria, A.O., Wendel, G.H. (1992). Structure–activity relationship in the gastric cytoprotective effect of several sesquiterpene lactones. J. Med. Chem. 35, 2452–8.CrossRefGoogle ScholarPubMed
Inoue, D. & Sagata, N. (2005). The Polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of Xenopus eggs. EMBO J. 24, 1057–67.CrossRefGoogle ScholarPubMed
Karaiskou, A., Lepretre, A.C., Pahlavan, G., Du Pasquier, D., Ozon, R. & Jessus, C. (2004). Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes. Development 131, 1543–52.CrossRefGoogle ScholarPubMed
Lee, K.H., Hall, I.H., Mar, E.C., Starnes, C.D., ElGebaly, S.A., Wadell, T.G., Hadgraft, R.I., Ruffner, C.G. & Weidner, I. (1977). Sesquiterpene antitumor agents: inhibitors of cellular metabolism. Science 196, 533–6.CrossRefGoogle ScholarPubMed
Lin, Y.P. & Schuetz, A.W. (1985). Spontaneous oocyte maturation in Rana pipiens: estrogen and follicle wall involvement. Gamete Res. 12, 1128.CrossRefGoogle Scholar
Lohka, M.J., Kyes, J.L. & Maller, J.L. (1987). Metaphase protein phosphorylation in Xenopus laevis eggs. Mol Cell Biol. 7, 760–8.Google ScholarPubMed
López, M.E., Giordano, O.S. & López, L.A. (2002). Sesquiterpene lactone dehydroleucodine selectively induces transient arrest inG2 in Allium cepa root meristematic cells. Protoplasma 219, 82–8.Google Scholar
Penissi, A.B., Fogal, T.H., Guzmán, J.A. & Piezzi, R.S. (1998). Gastroduodenal mucosal protection induced by dehydroleucodine: mucus secretion and role of monoamines. Dig. Dis. Sci. 43, 791–8.CrossRefGoogle ScholarPubMed
Perdiguero, E. & Nebreda, A. (2004). Regulation of cdc25 activity during the meiotic G2/M transition. Cell Cycle 3, 733–7.CrossRefGoogle ScholarPubMed
Peter, M., Labbe, J.C., Doree, M. & Mandart, E. (2002). A new role for Mos in Xenopus oocyte maturation: targeting Myt1 independently of MAPK. Development 129, 2129–39.CrossRefGoogle ScholarPubMed
Qian, Y.W., Erikson, E., Taieb, F.E. & Maller, J.L. (2001). The Polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B–Cdc2 in Xenopus oocytes. Mol. Biol. Cell. 12, 1791–9.CrossRefGoogle ScholarPubMed
Recio, M.C., Giner, R.M., Uriburu, L., Máñez, S., Cerdá, M., de la Fuente, J.R. & Ríos, J.L. (2000). In vivo activity of pseudoguaianolide sesquiterpene lactones in acute and chronic inflammation. Life Sci. 66, 2509–18.CrossRefGoogle ScholarPubMed
Sánchez-Toranzo, G., Giordano, O., López, L. & Bühler, M.I. (2007). Effect of dehydroleucodine on meiosis reinitiation in Bufo arenarum denuded oocytes. Zygote 15, 183–7.CrossRefGoogle ScholarPubMed
Sánchez-Toranzo, G., López, L.A., Zapata-Martínez, J., Gramajo Bühler, M.C. & Bühler, M.I. (2010). Involvement of the dehydroleucodine alpha-methylene-gamma-lactone function in GVBD inhibition in Bufo arenarum oocytes. Zygote 18, 41–9.CrossRefGoogle ScholarPubMed
Schmidt, T.J. (2006). Structure–activity relationships of sesquiterpenic lactones. Stud. Nat. Prod. Chem. 33, 309–92.CrossRefGoogle Scholar
Schmitt, A. & Nebreda, A.R. (2002). Signalling pathways in oocyte meiotic maturation. J. Cell Sci. 115, 2457–9.CrossRefGoogle ScholarPubMed
Schuetz, A.W. (1985). Local control mechanisms during oogenesis and folliculogenesis. Dev. Biol. 1, 383.Google ScholarPubMed
Zelarayán, L.I., Oterino, J. & Bühler, M.I. (1995). Spontaneous maturation in Bufo arenarum oocytes: follicle wall involvement, respiratory activity, and seasonal influences. J. Exp. Zool. 272, 356–62.CrossRefGoogle ScholarPubMed
Zelarayán, L., Oterino, J. & Bühler, M.I. (1996). Spontaneous maturation in Bufo arenarum oocytes: participation of protein kinase C. Zygote 4, 257–62.CrossRefGoogle ScholarPubMed
Zhang, S., Won, Y.K., Ong, C.N. & Shen, H.M. (2005). Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr. Med. Chem. Anticancer Agents 5, 239–49.CrossRefGoogle ScholarPubMed