Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T01:05:37.142Z Has data issue: false hasContentIssue false

Comparison of different extenders on the recovery and longevity of epididymal sperm from Spix's yellow-toothed cavies (Galea spixii Wagler, 1831)

Published online by Cambridge University Press:  01 March 2017

Andréia Maria da Silva
Affiliation:
Laboratório de Conservação e Germoplasma Animal, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil
Patrícia Cunha Sousa
Affiliation:
Laboratório de Conservação e Germoplasma Animal, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil
Lívia Batista Campos
Affiliation:
Laboratório de Conservação e Germoplasma Animal, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil
José Artur Brilhante Bezerra
Affiliation:
Laboratório de Conservação e Germoplasma Animal, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil
Arthur Emannuel de Araújo Lago
Affiliation:
Laboratório de Conservação e Germoplasma Animal, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil
Moacir Franco de Oliveira
Affiliation:
Laboratório de Conservação e Germoplasma Animal, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, RN, Brazil
Alexandre Rodrigues Silva*
Affiliation:
Departamento de Ciências Animais, Universidade Federal Rural do Semi-Árido (UFERSA), BR 110, Km 47, Bairro Pres. Costa e Silva. CEP: 59.625–900 Mossoró, RN, Brazil
*
All correspondence to: A.R. Silva Departamento de Ciências Animais, Universidade Federal Rural do Semi-Árido (UFERSA), BR 110, Km 47, Bairro Pres. Costa e Silva. CEP: 59.625–900 Mossoró, RN, Brazil. Fax: +55 84 3317 8360. E-mail: [email protected]

Summary

The aim of this study was to evaluate the performance of cavy (Galea spixii) epididymal sperm following addition to TES or TRIS extenders and using a thermal resistance test (TRT), as well as fluorescence analysis as a complementary method to predict the viability of these gametes. Nine testicle–epididymis complexes were used for sperm collection using a flotation method. Epididymis tails were sliced and one was immersed in 3 ml of TRIS buffer, and the other in 3 ml of TES, for 5 min. After sperm recovery, the samples were subjected to a TRT which involved incubation in a water bath at 37°C for 3 h. During incubation, sample parameters were assessed at 0, 15, 30, 60, 90, 120, 150 or 180 min intervals. Results indicated that the TRIS diluent was more efficient than TES (P < 0.05) for the maintenance of sperm parameters in Spix's yellow-toothed cavies over the whole TRT, maintaining sperm longevity for an extended time. In conclusion, we indicate the use of TRIS diluent for recovery and maintenance of longevity of epididymal sperm from cavies (G. spixii).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Catzeflis, F., Patton, J., Percequillo, A. & Weksler, M. (2016). Galea spixii. The IUCN Red List of Threatened Species 2016: e.T8825A22189453. Accessed 28 June 2016.Google Scholar
Celeghini, E.C., Arruda, R.P., Andrade, A.F., Nascimento, J. & Raphael, C.F. (2007). Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes. Reprod. Domest. Anim. 42, 479–88.CrossRefGoogle ScholarPubMed
Celeghini, E.C.C., Nascimento, J., Raphael, C.F., Andrade, A.F.C. & Arruda, R.P. (2010). Simultaneous assessment of plasmatic, acrosomal, and mitochondrial membranes in ram sperm by fluorescent probes. Arq. Bras. Med. Vet. Zoo. 62, 536–43.Google Scholar
Cunha, A.T.M., Carvalho, J.O. & Dode, M.A.N. (2015). Techniques for sperm evaluation using fluorescent probes. Semina 36, 4365–76.Google Scholar
Dunnum, J. & Vargas, J. (2008). Galea monasteriensis. The IUCN Red List of Threatened Species 2008: e.T136748A4335042. Accessed 28 June 2016.Google Scholar
Emerick, L.L., Dias, J.C., Vale Filho, V.R., Silva, M.A., Andrade, V.J., Leite, T.G. & Martins, J.A.M. (2011). Avaliação da integridade de membrana em espermatozóide bovino criopreservado para prever o índice de prenhez. Ci. Anim. 12, 536–46.Google Scholar
England, G.C.W. (1993). Cryopreservation of dog semen: a review. J. Reprod. Fertil. 47, 243–55.Google Scholar
Ferraz, M.S., Menezes, D.J.A., Pessoa, G.T., Cabral, R.M., Illera, M.J., Silva, A.R. & Carvalho, M.A.M. (2011). Collection and evaluation of epididymal sperm in captive agoutis (Dasyprocta aguti). Theriogenology 75, 459–62.Google Scholar
Fonseca, J.F., Torres, C.A.A., Maffili, V.V., Borge, A.M., Santos, A.D.F., Rodrigues, M.T. & Oliveira, R.F.M. (2005). The hypoosmotic swelling test in fresh goat spermatozoa. Anim. Reprod. 2, 139–44.Google Scholar
Holt, W.V. (2000). Fundamental aspects of sperm cryobiology: the importance of species and individual differences. Theriogenology 53, 4758.Google Scholar
Li, H., Hung, P. & Suarez, S.S. (2015). Ejaculated mouse sperm enter cumulus−oocyte complexes more efficiently in vitro than epididymal sperm. PLoS ONE 10 (5), e0127753.CrossRefGoogle ScholarPubMed
Maia, M.S. & Bicudo, S.D. (2009). Radicais livres, antioxidantes e função espermática em mamíferos: uma revisão. Rev. Bras. Reprod. Anim. 33, 183–93.Google Scholar
Martins, M.I.M. (2007). Perspectivas da aplicação comercial de biotecnologias envolvendo espermatozoides obtidos de epidídimo de cães e gatos. Rev. Bras. Reprod. Anim. 31, 115–8.Google Scholar
Medeiros, C.M.O., Forell, F., Oliveira, A.T.D. & Rodrigues, J.L. (2002). Current status of sperm cryopreservation: why isn't it better? Theriogenology 57, 327–44.CrossRefGoogle ScholarPubMed
Oliveira, G.B., Rodrigues, M.N., Sousa, E.S., Albuquerque, J.F.G., Moura, C.E.B., Ambrósio, C.E., Miglino, M.A. & Oliveira, M.F. (2010). Origem e distribuição dos nervos isquiáticos do preá. Ciênc. Rural 40, 1741–45.Google Scholar
Ponce, A.A., Aires, V.A., Carrascosa, R., Fiol De Cuneo, M., Ruiz, R.D., Lacuara, J.L. (1998). Functional activity of epididymal Chinchilla lanigera spermatozoa cryopreserved in different extenders. Res. Vet. Sci. 64, 239–43.Google Scholar
Ravagnan, L., Roumier, T. & Kroemer, G. (2002). Mitochondria, the killer organelles and their weapons. J. Cell. Physiol. 192, 131–7.Google Scholar
Rodrigues, B.A. (1997). Efeito do diluidor à base de albumina sérica bovina (BSA) sobre a viabilidade in vitro do sêmen canino criopreservado. [Effect of the extender based in bovine serum albumine (BSA) on the in vitro viability of canine frozen semen.] Master's Thesis in Veterinary Medicine – Post-graduation Course in Veterinary Science at the Federal University of Rio Grande do Sul, Brazil. 176 pp.Google Scholar
Rodrigues, M.N., Oliveira, G.B., Albuquerque, J.F.G., Menezes, D.J.A., Assis Neto, A.C., Miglino, M.A. & Oliveira, M.F. (2013). Aspectos anatômicos do aparelho genital masculino de preás adultos (Galea spixii Wagler, 1831). Biotemas 26, 181–8.Google Scholar
Santos, E.A.A., Sousa, P.C., Peixoto, G.C.X., Simão, B.R., Oliveira, M.F. & Silva, A.R. (2013a). Establishing the hypoosmotic swelling test for sperm analysis in collared peccaries (Pecari tajacu). Arq. Bras. Med. Vet. Zoot. 65, 1257–60.CrossRefGoogle Scholar
Santos, P.R.S., Oliveira, M.F., Arroyo, M.A., Silva, A.R., Rici, R.E., Miglino, M.A. & Assis Neto, A.C. (2013b). Ultrastructure of spermatogenesis in Spix's yellow-toothed cavy (Galea spixii). Reproduction 147, 13–9.Google Scholar
Sikka, S.C. (2004). Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J. Androl. 25, 518.Google Scholar
Silva, M.A., Peixoto, G.C.X., Santos, E.A.A., Castelo, T.S., Oliveira, M.F. & Silva, A.R. (2011). Recovery and cryopreservation of epididymal sperm from agouti (Dasiprocta aguti) using powdered coconut water (ACP-109c) and TRIS extenders. Theriogenology 76, 1084–9.CrossRefGoogle ScholarPubMed
Silva, P.F. & Gadella, B.M. (2006). Detection of damage in mammalian sperm cells. Theriogenology 65, 958–78.CrossRefGoogle ScholarPubMed
Sousa, P.C., Santos, E.A.A., Silva, A.M., Bezerra, J.A.B., Souza, A.L.P., Lima, G.L., Oliveira, M.F. & Silva, A.R. (2016). Identification of ultrastructural and functional damages in sperm from six-banded armadillos (Euphractus sexcinctus) due to cryopreservation. Pesq. Vet. Bras. 36, 767–74.Google Scholar
Vale, A.M., Oliveira, G.B., Favaron, P.O., Miglino, M.A., Paula, V.V., Silva, A.R. & Oliveira, M.F. (2013). Dinâmica da inversão do saco vitelino em preás (Galea spixii Wagler, 1831). Pesq. Vet. Bras. 33, 1033–40.Google Scholar
Varisli, O., Agca, C. & Agca, Y. (2015). Influence of extenders and cooling rates on epididymal sperm of Lewis rat strain. Ankara. Üniv. Vet. Fak. Derg. 62, 5762.Google Scholar
Varisli, O., Scott, H., Agca, C. & Agca, Y. (2013). The effects of cooling rates and type of freezing extenders on cryosurvival of rat sperm. Cryobiology 67, 109–16.CrossRefGoogle ScholarPubMed
Wilson, D.E. & Reeder, D.M. (2005). Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Baltimore: The Johns Hopkins University Press, 2142 pp.Google Scholar
Yamashita, M., Yamagata, K., Tsumura, K., Nakanishi, T. & Baba, T. (2007). Acrosome reaction of mouse epididymal sperm on oocyte zona pellucida. J. Reprod. Dev. 53, 255–62.Google Scholar