Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T13:23:51.023Z Has data issue: false hasContentIssue false

Bovine oocytes and early embryos express Staufen and ELAVL RNA-binding proteins

Published online by Cambridge University Press:  01 May 2008

M.D. Calder
Affiliation:
Departments of Physiology and Pharmacology and Obstetrics and Gynaecology, University of Western Ontario, Children's Health Research Institute – LHRI, 5th Floor Victoria Research Laboratories, 800 Commissioners Road, London, Ontario, CanadaN6A 4G5.
P. Madan
Affiliation:
Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.
A.J. Watson*
Affiliation:
Departments of Physiology and Pharmacology and Obstetrics and Gynaecology, University of Western Ontario, Children's Health Research Institute – LHRI, 5th Floor Victoria Research Laboratories, 800 Commissioners Road, London, Ontario, CanadaN6A 4G5.
*
All correspondence to: A.J. Watson. Departments of Physiology and Pharmacology and Obstetrics and Gynaecology, University of Western Ontario, Children's Health Research Institute – LHRI, 5th Floor Victoria Research Laboratories, 800 Commissioners Road, London, Ontario, CanadaN6A 4G5. Tel: +519 685 8500, ext 55068. Fax: +519 685 8186. e-mail: [email protected]

Summary

RNA-binding proteins (RBP) influence RNA editing, localization, stability and translation and may contribute to oocyte developmental competence by regulating the stability and turnover of oogenetic mRNAs. The expression of Staufen 1 and 2 and ELAVL1, ELAVL2 RNA-binding proteins during cow early development was characterized. Cumulus–oocyte complexes were collected from slaughterhouse ovaries, matured, inseminated and subjected to embryo culture in vitro. Oocyte or preimplantation embryo pools were processed for RT-PCR and whole-mount immunofluorescence analysis of mRNA expression and protein distribution. STAU1 and STAU2 and ELAVL1 mRNAs and proteins were detected throughout cow preimplantation development from the germinal vesicle (GV) oocyte to the blastocyst stage. ELAVL2 mRNAs were detectable from the GV to the morula stage, whereas ELAVL2 protein was in all stages examined and localized to both cytoplasm and nuclei. The findings provide a foundation for investigating the role of RBPs during mammalian oocyte maturation and early embryogenesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamiak, S.J., Mackie, K., Watt, R.G., Webb, R. & Sinclair, K.D. (2005). Impact of nutrition on oocyte quality: cumulative effects of body composition and diet leading to hyperinsulinemia in cattle. Biol. Reprod. 73, 918–26.CrossRefGoogle ScholarPubMed
Atasoy, U., Watson, J., Patel, D. & Keene, J.D. (1998). ELAV protein HuA (HuR) can redistribute between nucleus and cytoplasm and is upregulated during serum stimulation and T cell activation. J. Cell Sci. 111 (Pt 21), 3145–56.CrossRefGoogle ScholarPubMed
Barcroft, L.C., Hay-Schmidt, A., Caveney, A., Gilfoyle, E., Overstrom, E.W., Hyttel, P. & Watson, A. J. (1998). Trophectoderm differentiation in the bovine embryo: characterization of a polarized epithelium. J. Reprod. Fertil. 114, 327–39.CrossRefGoogle ScholarPubMed
Barker, D.J. (2003). The developmental origins of adult disease. Eur. J. Epidemiol. 18, 733–6.CrossRefGoogle ScholarPubMed
Bavister, B.D. (2000). Interactions between embryos and the culture milieu. Theriogenology 53, 619–26.CrossRefGoogle ScholarPubMed
Boerjan, M.L., den Daas, J.H. & Dieleman, S.J. (2000). Embryonic origins of health: long-term effects of IVF in human and livestock. Theriogenology 53, 537–47.CrossRefGoogle ScholarPubMed
Bolton, V.N. (1992). Controversies and opinions in embryo culture: two- to four-cell transfer vs blastocyst. J. Assist. Reprod. Genet. 9, 506–8.CrossRefGoogle ScholarPubMed
Brevini-Gandolfi, T.A., Favetta, L.A., Mauri, L., Luciano, A.M., Cillo, F. & Gandolfi, F. (1999). Changes in poly(A) tail length of maternal transcripts during in vitro maturation of bovine oocytes and their relation with developmental competence. Mol. Reprod. Dev. 52, 427–33.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Calder, M.D., Caveney, A.N., Westhusin, M.E. & Watson, A.J. (2001). Cyclooxygenase-2 and prostaglandin E(2)(PGE(2)) receptor messenger RNAs are affected by bovine oocyte maturation time and cumulus–oocyte complex quality and PGE(2) induces moderate expansion of the bovine cumulus in vitro. Biol. Reprod. 65, 135–40.CrossRefGoogle Scholar
Calder, M.D., Caveney, A.N., Smith, L.C. & Watson, A.J. (2003). Responsiveness of bovine cumulus–oocyte-complexes (COC) to porcine and recombinant human FSH and the effect of COC quality on gonadotropin receptor and Cx43 marker gene mRNAs during maturation in vitro. Reprod. Biol. Endocrinol. 1, 14.CrossRefGoogle ScholarPubMed
Calder, M.D., Caveney, A.N., Sirard, M.A. & Watson, A.J. (2005). Effect of serum and cumulus cell expansion on marker gene transcripts in bovine cumulus–oocyte complexes during maturation in vitro. Fertil. Steril. 83, Suppl 1, 1077–85.CrossRefGoogle ScholarPubMed
De Sousa, P.A., Westhusin, M.E. & Watson, A.J. (1998). Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos. Mol. Reprod. Dev. 49, 119–30.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Duchaine, T., Wang, H.J., Luo, M., Steinberg, S.V., Nabi, I.R. & DesGroseillers, L. (2000). A novel murine Staufen isoform modulates the RNA content of Staufen complexes. Mol. Cell. Biol. 20, 5592–601.CrossRefGoogle ScholarPubMed
Ecker, D.J., Stein, P., Xu, Z., Williams, C.J., Kopf, G.S., Bilker, W.B., Abel, T. & Schultz, R.M. (2004). Long-term effects of culture of preimplantation mouse embryos on behavior. Proc. Natl. Acad. Sci. U S A 101, 1595–600.CrossRefGoogle ScholarPubMed
Fair, T., Hyttel, P. & Greve, T. (1995). Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol. Reprod. Dev. 42, 437–42.CrossRefGoogle ScholarPubMed
Fan, X.C. & Steitz, J.A. (1998). Overexpression of HuR, a nuclear–cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17, 3448–60.CrossRefGoogle Scholar
Gandolfi, T.A. & Gandolfi, F. (2001). The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology 55, 1255–76.CrossRefGoogle Scholar
Gardner, D.K., Lane, M. & Schoolcraft, W.B. (2002). Physiology and culture of the human blastocyst. J. Reprod. Immunol. 55, 85100.CrossRefGoogle ScholarPubMed
Good, P.J. (1995). A conserved family of elav-like genes in vertebrates. Proc. Natl. Acad. Sci. U S A 92, 4557–61.CrossRefGoogle ScholarPubMed
Guhaniyogi, J. & Brewer, G. (2001). Regulation of mRNA stability in mammalian cells. Gene 265, 1123.CrossRefGoogle ScholarPubMed
Ho, Y., Doherty, A.S. & Schultz, R.M. (1994). Mouse preimplantation embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression. Mol. Reprod. Dev. 38, 131–41.CrossRefGoogle ScholarPubMed
Ho, Y., Wigglesworth, K., Eppig, J.J. & Schultz, R.M. (1995). Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–8.CrossRefGoogle ScholarPubMed
Jain, R.G., Andrews, L.G., McGowan, K.M., Pekala, P.H. & Keene, J.D. (1997). Ectopic expression of Hel-N1, an RNA-binding protein, increases glucose transporter (GLUT1) expression in 3T3-L1 adipocytes. Mol. Cell. Biol. 17, 954–62.CrossRefGoogle ScholarPubMed
Knijn, H.M., Wrenzycki, C., Hendriksen, P.J., Vos, P.L., Herrmann, D., Van Der Weijden, G.C., Niemann, H. & Dieleman, S.J. (2002). Effects of oocyte maturation regimen on the relative abundance of gene transcripts in bovine blastocysts derived in vitro or in vivo. Reproduction 124, 365–75.CrossRefGoogle ScholarPubMed
Knijn, H.M., Wrenzycki, C., Hendriksen, P.J., Vos, P.L., Zeinstra, E.C., Van Der Weijden, G.C., Niemann, H. & Dieleman, S.J. (2005). In vitro and in vivo culture effects on mRNA expression of genes involved in metabolism and apoptosis in bovine embryos. Reprod. Fertil. Dev. 17, 775–84.CrossRefGoogle ScholarPubMed
Lasko, P. (2000). The Drosophila melanogaster genome: translation factors and RNA-binding proteins. J. Cell Biol. 150, F516.CrossRefGoogle ScholarPubMed
Leese, H.J. (2002). Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24, 845–9.CrossRefGoogle Scholar
Madan, P., Calder, M.D. & Watson, A.J. (2005). Mitogen-activated protein kinase (MAPK) blockade of bovine preimplantation embryogenesis requires inhibition of both p38 and extracellular signal-regulated kinase (ERK) pathways. Reproduction 130, 4151.CrossRefGoogle ScholarPubMed
Mann, M.R., Lee, S.S., Doherty, A.S., Verona, R.I., Nolen, L.D., Schultz, R.M. & Bartolomei, M.S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131, 3727–35.CrossRefGoogle ScholarPubMed
Marion, R.M., Fortes, P., Beloso, A., Dotti, C. & Ortin, J. (1999). A human sequence homologue of Staufen is an RNA-binding protein that is associated with polysomes and localizes to the rough endoplasmic reticulum. Mol. Cell. Biol. 19, 2212–9.CrossRefGoogle Scholar
McEvoy, T.G., Sinclair, K.D., Young, L.E., Wilmut, I. & Robinson, J.J. (2000). Large offspring syndrome and other consequences of ruminant embryo culture in vitro: relevance to blastocyst culture in human ART. Hum. Fertil. (Camb) 3, 238246.CrossRefGoogle ScholarPubMed
McEvoy, T.G., Robinson, J.J. & Sinclair, K.D. (2001). Developmental consequences of embryo and cell manipulation in mice and farm animals. Reproduction 122, 507–18.CrossRefGoogle ScholarPubMed
Natale, D.R., Paliga, A.J., Beier, F., D'Souza, S.J. & Watson, A.J. (2004). p38 MAPK signaling during murine preimplantation development. Dev Biol. 268, 7688.CrossRefGoogle ScholarPubMed
Niemann, H. & Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53, 2134.CrossRefGoogle ScholarPubMed
Offenberg, H., Barcroft, L.C., Caveney, A., Viuff, D., Thomsen, P.D. & Watson, A.J. (2000). mRNAs encoding aquaporins are present during murine preimplantation development. Mol. Reprod. Dev. 57, 323–30.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Rinaudo, P. & Schultz, R.M. (2004). Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128, 301–11.CrossRefGoogle ScholarPubMed
Saunders, L.R. & Barber, G.N. (2003). The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J. 17, 961–83.CrossRefGoogle ScholarPubMed
Schultz, R.M. (2005). From egg to embryo: a peripatetic journey. Reproduction 130, 825–8.CrossRefGoogle ScholarPubMed
Schultz, R.M. & Williams, C.J. (2002). The science of ART. Science 296, 2188–90.CrossRefGoogle ScholarPubMed
Sinclair, K.D., McEvoy, T.G., Maxfield, E.K., Maltin, C.A., Young, L.E., Wilmut, I., Broadbent, P.J. & Robinson, J.J. (1999). Aberrant fetal growth and development after in vitro culture of sheep zygotes. J. Reprod. Fertil. 116, 177–86.CrossRefGoogle ScholarPubMed
Sinclair, K.D., Rooke, J.A. & McEvoy, T.G. (2003). Regulation of nutrient uptake and metabolism in pre-elongation ruminant embryos. Reprod. Suppl. 61, 371–85.Google ScholarPubMed
St Johnston, D., Beuchle, D. & Nusslein-Volhard, C. (1991). Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 5163.CrossRefGoogle ScholarPubMed
Telford, N.A., Watson, A.J. & Schultz, G.A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90100.CrossRefGoogle ScholarPubMed
Temeles, G.L. & Schultz, R.M. (1997). Transient polyadenylation of a maternal mRNA following fertilization of mouse eggs. J. Reprod. Fertil. 109, 223–8.CrossRefGoogle ScholarPubMed
van Wagtendonk-de Leeuw, A.M., Mullaart, E., de Roos, A.P., Merton, J.S., den Daas, J.H., Kemp, B. & de Ruigh, L. (2000). Effects of different reproduction techniques: AI MOET or IVP, on health and welfare of bovine offspring. Theriogenology 53, 575–97.CrossRefGoogle ScholarPubMed
Watson, A.J., De Sousa, P., Caveney, A., Barcroft, L.C., Natale, D., Urquhart, J. & Westhusin, M.E. (2000). Impact of bovine oocyte maturation media on oocyte transcript levels, blastocyst development, cell number and apoptosis. Biol. Reprod. 62, 355–64.CrossRefGoogle ScholarPubMed
Wrenzycki, C., Herrmann, D., Carnwath, J.W. & Niemann, H. (1999). Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53, 818.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Wrenzycki, C., Herrmann, D., Lucas-Hahn, A., Korsawe, K., Lemme, E. & Niemann, H. (2005). Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod. Fertil. Dev. 17, 2335.CrossRefGoogle ScholarPubMed
Yang, J., Medvedev, S., Reddi, P.P., Schultz, R.M. & Hecht, N.B. (2005a). The DNA/RNA-binding protein MSY2 marks specific transcripts for cytoplasmic storage in mouse male germ cells. Proc. Natl. Acad. Sci. U S A 102, 1513–8.CrossRefGoogle ScholarPubMed
Yang, J., Medvedev, S., Yu, J., Tang, L.C., Agno, J.E., Matzuk, M.M., Schultz, R.M. & Hecht, N.B. (2005b). Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc. Natl. Acad. Sci. U S A 102, 5755–60.CrossRefGoogle ScholarPubMed
Yang, J., Medvedev, S., Yu, J., Schultz, R.M. & Hecht, N.B. (2006). Deletion of the DNA/RNA-binding protein MSY2 leads to post-meiotic arrest. Mol. Cell. Endocrinol. 250, 20–4.CrossRefGoogle ScholarPubMed
Yu, J., Hecht, N.B. & Schultz, R.M. (2003). Requirement for RNA-binding activity of MSY2 for cytoplasmic localization and retention in mouse oocytes. Dev. Biol. 255, 249–62.CrossRefGoogle ScholarPubMed