Published online by Cambridge University Press: 01 May 2009
5-AZA-2′-deoxycytidine (5-AZA-CdR) is a demethylating, teratogenic agent and a mutagen, which causes defects in the developing mouse and rat after implantation. Our previous data indicated that 5-AZA-CdR (0.2 and 1.0 μM) inhibited the development of mouse preimplantation embryos. Pronuclear embryos exposed to 5-AZA-CdR at the pronuclear stage were unable to form 8-cell embryos, while 2-cell-stage embryos exposed to 5-AZA-CdR only developed into uncompacted 8-cell-stage embryos. And there was no formation of blastocysts when 4-cell embryos cultured in 5-AZA-CdR. In our present study, we detected Dnmt1o protein and some developmental gene expression in order to find the reasons for the developmental arrest. Dnmt1o could not traffic to 8-cell nuclei as control when embryos were exposed to 5-AZA-CdR. Dnmt1o was in cytoplasm at 2-cell and 4-cell stages before and after treated with 5-AZA-CdR. Gene expression changes were also detected in this research. Our data indicated that connexin 31 (Cx31), connexin 43 (Cx43), connexin 45 (Cx45), E-cadherin (Cdh1) and β-catenin (Ctnnb1) were all downregulated by 5-AZA-CdR. Cx31, Cx43 and Cx45 are members of connexins family, which have a central role in gap junctions. Cdh1 and Ctnnb1 are necessary for the foundation of tight junctions. Therefore, developmental arrest induced by 5-AZA-CdR may be caused by the failure of Dnmt1o cytoplasmic–nuclear traffic and the down-regulation of developmental gene expression. Normal compaction and blastocoel cavitation need Dnmt1o traffic to 8-cell nuclei and the right gene expression, especially the correlative genes in gap junctions and tight junctions.