Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T14:32:45.217Z Has data issue: false hasContentIssue false

5-HT-receptive structures are localized in the interblastomere cleft of Paracеntrotus lividus early embryos

Published online by Cambridge University Press:  01 February 2008

Yu. B. Shmukler
Affiliation:
N.K. Koltzov Institute of Developmental Biology, Russian Acad. Sci. 26, Vavilov st., Moscow, 119334, Russia.
Francesco Silvestre
Affiliation:
Cell Biology Laboratory, Stazione Zoologica, Napoli, Italy.
Elisabetta Tosti*
Affiliation:
Cell Biology Laboratory, Stazione Zoologica, Napoli, Italy.
*
1All correspondence to: Elisabetta Tosti. Stazione Zoologica ‘Anton Dohrn’, Villa Comunale 1, 80121, Napoli, Italy. Tel: +39 81 5833288. Fax: +39 81 7641355. e-mail: [email protected]

Summary

Local application of the agonists of serotonin receptors of third type 5-HTQ, SR57277A and quipazine into the interblastomere cleft of the sea urchin Paracentrotus lividus embryo during first cleavage division, evokes specific membrane currents, whereas application of these drugs out of contact area show currents of lower amplitude and longer latent period. At the same time 5-HT3-receptor agonist quipazine imitates interblastomere signal in half embryos, but corresponding antagonists prevent it. Present data develop the hypothesis of protosynapse, demonstrating that the distribution of membrane serotonin receptors is limited to the period of cleavage division and localized in the interblastomere contact area. A possible role of spatial–temporal restriction of receptors at the interblastomere contact area is discussed in relation to the subsequent embryo development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buznikov, G.A. (ed.) (1990). Neurotransmitters in Embryogenesis, p. 526. Churchill, Academic Press.Google Scholar
Buznikov, G.A. & Shmukler, Yu.B. (1978). On the influence of antitransmitter substances on cellular interactions in early sea urchin embryos. Sov. J. Dev. Biol. 9, 173–8.Google Scholar
Buznikov, G.A. & Shmukler, Yu.B. (1981). The possible role of ‘prenervous’ neurotransmitters in cellular interactions of early embryogenesis: a hypothesis. Neurochem. Res. 6, 5569.CrossRefGoogle ScholarPubMed
Shmukler, Yu.B. (1981). Cellular interactions in early sea urchin embryos. III. Influence of neuropharmaca on the cleavage pattern of Scaphechinus mirabilis half. Sov. J. Dev. Biol. 12, 404–9.Google Scholar
Shmukler, Yu.B. (1992). Specific binding of [3H]8-OH-DPAT by early embryos of sea urchin Strongylocentrotus intermedius. Biol. Membr. 9, 1167–9.Google Scholar
Shmukler, Yu.B. (1993). On the possibility of membrane reception of neurotransmitter in sea urchin early embryos. Comp. Biochem. Physiol. 106C, 269–73.Google Scholar
Shmukler, Yu.B. & Buznikov, G.A. (1998). Functional coupling of neurotransmitters with second messengers during cleavage divisions: facts and hypotheses. Perspect. Dev. Neurobiol. 5, 469–80.Google Scholar
Shmukler, Yu.B. & Tosti, E. (2002). Serotonergic-induced ion currents in cleaving sea urchin embryo. Invertebr. Reprod. Dev. 42, 43–9.CrossRefGoogle Scholar
Shmukler, Yu.B., Chailakhian, L.M., Smolianinov, V.V., Bliokh, Zh.L., Karpovich, A.L., Gusareva, E.V., Naidenko, T.Kh., Khashaev, Z. Kh-M. & Medvedeva, T.D. (1981). Cellular interactions in early sea urchin embryos. II. Dated mechanical isolation of blastomeres. Sov. J. Dev. Biol. 12, 398403.Google Scholar
Shmukler, Yu.B., Grigoriev, N.G., Buznikov, G.A. & Turpaev, T.M. (1986). Regulation of cleavage divisions: participation of ‘prenervous’ neurotransmitters coupled with second messengers. Comp. Biochem. Physiol. 83C, 423–7.Google Scholar
Vacquier, V.D. & Mazia, D. (1968). Twinning of sand dollar embryos by means of dithiothreitol. The structural basis of blastomere interactions. Exp. Cell Res. 52, 209–19.CrossRefGoogle ScholarPubMed
Yazaki, I., Tosti, E. & Dale, B. (1995). Cytoskeletal elements link calcium channel activity and the cell cycle in early sea urchin embryos. Development 121, 1827–31.CrossRefGoogle Scholar