Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T20:33:20.212Z Has data issue: false hasContentIssue false

Optimising the use of phosphorus sources in growing meat ducks

Published online by Cambridge University Press:  01 September 2006

M. RODEHUTSCORD
Affiliation:
Institut für Ernährungswissenschaften, Universität Halle-Wittenberg, D-06099Halle (Saale), Germany E-mail: [email protected]
Get access

Abstract

Optimal utilisation of limited phosphate resources in animal feeding requires detailed knowledge of both the requirement for available phosphorus (P), and the availability of P from relevant feed ingredients. In growing ducks, the P concentration of gained body weight and the inevitable P losses voided determine the requirement for available P. The concentration of available P needed in the diet then depends on the feed conversion ratio. Plant and mineral feedstuffs contribute to the available P content of the diet depending on their respective availability. This review summarises the literature on P nutrition in ducks with regard to factors affecting P requirement and considerations of P availability, including the use of microbial phytase. Most of the published data refer to the Pekin duck. The P content in body weight gain is 5.0–5.5 g/kg in young ducks, and it probably decreases with age. The ratio of Ca to P in body weight gain is about 1.8:1. Inevitable P losses are not yet quantified and can only be estimated to account for 1 g/kg of feed intake. Availability of P from plant-based diets without P supplements and phytase ranged between 28 and 49%. Availability of P from different mineral sources ranged between 77 and 100%. Microbial phytases were efficient in improving the availability of P from plant-based diets. A simple model is presented, which allows flexible calculations to be made of the necessary P concentrations in the diets for ducks. The most efficient tool for reducing the use of P sources is the frequent adjustment of the dietary P content during the growth period. Data from growth studies indicate that the suggestions made herein are sufficiently safe for application in Pekin duck feeding.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

APPLEGATE, T.J., ANGEL, R. and CLASSEN, H.L. (2003) Effect of dietary calcium, 25-hydroxycholecalciferol, or bird strain on small intestinal phytase activity in broiler chickens. Poultry Science 82: 11401148.CrossRefGoogle ScholarPubMed
APPLEGATE, T.J., KARCHER, D.M. and LILBURN, M.S. (2005) Comparative development of the small intestine in the turkey poult and pekin duckling. Poultry Science 84: 426431.CrossRefGoogle ScholarPubMed
ATTIA, Y.A. (2003) Performance, carcass characteristics, meat quality and plasma constituents of meat type drakes fed diets containing different levels of lysine with or without a microbial phytase. Archives of Animal Nutrition 57: 3948.CrossRefGoogle ScholarPubMed
BOCHNO, R., BRZOZOWSKI, W. and MURAWSKA, D. (2005) Age-related changes in the distribution of lean, fat with skin and bones in duck carcases. British Poultry Science 46: 199203.CrossRefGoogle ScholarPubMed
DÄNNER, E., TIMMLER, R., BESSEI, W. and RODEHUTSCORD, M. (2006) Inevitable losses of phosphorus in growing male turkeys 8 and 12 weeks of age. Archiv für Geflügelkunde, in press.Google Scholar
EDWARDS, H.M. JR. (2002) Studies on the efficacy of cholecalciferol and derivatives for stimulating phytate utilization in broilers. Poultry Science 81: 10261031.CrossRefGoogle ScholarPubMed
EECKHOUT, W. and DE PAEPE, M. (1994) Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Animal Feed Science and Technology 47: 1929.CrossRefGoogle Scholar
ELKIN, R.G. (1987) A review of duck nutrition research. World's Poultry Science Journal 43: 84106.CrossRefGoogle Scholar
FAO (2005) Global Livestock and Health Atlas. http://www.fao.org/ag/aga/glipha/index.jsp, accessed June 3, 2005.Google Scholar
FARRELL, D.J., MARTIN, E., DU PREEZ, J.J., BONGARTS, M., BETTS, M., SUDAMAN, A. and THOMSON, E. (1993) The beneficial effects of a microbial feed phytase in diets of broiler chickens and ducklings. Journal of Animal Physiology and Animal Nutrition 69: 278283.CrossRefGoogle Scholar
GFE (1999) Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere. 7. Empfehlungen zur Energie- und Nährstoffversorgung der Legehennen und Masthühner (Broiler). DLG-Verlag, Frankfurt a. M.Google Scholar
HEMPEL, R. and RODEHUTSCORD, M. (2006) Inevitable losses of phosphorus in broilers. Proceedings of the Society of Nutrition Physiology, 15: 170[abs.]Google Scholar
JAMROZ, D., ORDA, J., WILICZKIEWICZ, A. and SKORUPINSKA, J. (1998) Stickstoff- und Phosphorverwertung, wie auch Verdaulichkeit der Aminosäuren bei Verfütterung von Triticale und Enzymen an Hähnchen, Enten und Gänse. Journal of Animal Physiology and Animal Nutrition 79: 123134.CrossRefGoogle Scholar
JAMROZ, D., WILICZKIEWICZ, A., ORDA, J., WERTELECKI, T. and SKORUPINSKA, J. (2002) Aspects of development of digestive activity of intestine in young chickens, ducks and geese. Journal of Animal Physiology and Animal Nutrition 86: 353366.CrossRefGoogle ScholarPubMed
KING, D.E., ASEM, E.D. and ADEOLA, O. (2000) Ontogenetic development of intestinal digestive functions in White Pekin ducks. Journal of Nutrition 130: 5762.CrossRefGoogle ScholarPubMed
LESKE, K. and COON, C. (2002) The development of feedstuff retainable phosphorus values for broilers. Poultry Science 81: 16811693.CrossRefGoogle ScholarPubMed
LIMA, F.R., MENDONCA, C.X., ALVAREZ, J.C., GARZILLO, J.M.F., GHION, E. and LEAL, P.M. (1997) Biological evaluations of commercial dicalcium phosphates as sources of available phosphorus for broiler chicks. Poultry Science 76: 17071713.CrossRefGoogle ScholarPubMed
MAENZ, D.D. and CLASSEN, H.L. (1998) Phytase activity in the small intestinal brush border membrane of the chicken. Poultry Science 77: 557563.CrossRefGoogle ScholarPubMed
MARTIN, E.A., NOLAN, J.V., NITSAN, Z. and FARRELL, D.J. (1998) Strategies to improve the nutritive value of rice bran in poultry diets. IV. Effects of addition of fish meal and a microbial phytase to duckling diets on bird performance and amino acid digestibility. British Poultry Science 39: 612621.CrossRefGoogle Scholar
NRC (1994) Nutrient Requirements of Poultry. National Academy Press, Washington, D.C.Google Scholar
ORBAN, J.I., ADEOLA, O. and STROSHINE, R. (1999) Microbial phytase in finisher diets of white pekin ducks: effect on growth performance, plasma phosphorus concentration, and leg bone characteristics. Poultry Science 78: 366377.CrossRefGoogle ScholarPubMed
RAVINDRAN, V., KORNEGAY, E.T., POTTER, L.M., OGUNABAMERU, B.O., WELTEN, M.K., WILSON, J.H. and POTCHANAKORN, M. (1995) An evaluation of various response criteria in assessing biological availability of phosphorus for broilers. Poultry Science 74: 18201830.CrossRefGoogle ScholarPubMed
RODEHUTSCORD, M., ABEL, H., FRIEDT, W., WENK, C., FLACHOWSKY, G., AHLGRIMM, H.-J., JOHNKE, B., KÜHL, R. and BREVES, G. (2002) Consequences of the ban of by-products from terrestrial animals in livestock feeding in Germany and the European Union: alternatives, nutrient and energy cycles, plant production, and economic aspects. Archives of Animal Nutrition 56: 6791.Google ScholarPubMed
RODEHUTSCORD, M. and DIECKMANN, A. (2005) Comparative studies with three-week-old chickens, turkeys, ducks, and quails on the response in phosphorus utilization to a supplementation of monobasic calcium phosphate. Poultry Science 84: 12521260.CrossRefGoogle ScholarPubMed
RODEHUTSCORD, M., HAVERKAMP, R. and PFEFFER, E. (1998) Inevitable losses of phosphorus in pigs, estimated from balance data using diets deficient in phosphorus. Archives of Animal Nutrition 51: 2738.Google ScholarPubMed
RODEHUTSCORD, M., HEMPEL, R. and WENDT, P. (2006) Phytase effects on the efficiency of utilization and blood concentrations of phosphorus and calcium in Pekin ducks. British Poultry Science, 47: in press.CrossRefGoogle ScholarPubMed
RODEHUTSCORD, M., HEUVERS, H. and PFEFFER, E. (2000) Effect of organic matter digestibility on obligatory faecal phosphorus loss in lactating goats, determined from balance data. Animal Science 70: 561568.CrossRefGoogle Scholar
RODEHUTSCORD, M., TIMMLER, R. and WENDT, P. (2003) Response of growing pekin ducks to supplementation of monobasic calcium phosphate to low-phosphorus diets. Poultry Science 82: 309319.CrossRefGoogle ScholarPubMed
RUSH, J.K., ANGEL, C.R., BANKS, K.M., THOMPSON, K.L. and APPLEGATE, T.J. (2005) Effect of dietary calcium and vitamin D3 on calcium and phosphorus retention in White Pekin ducklings. Poultry Science 84: 561570.CrossRefGoogle ScholarPubMed
TIMMLER, R. and RODEHUTSCORD, M. (2001) Efficiency of different xylanase preparations in diets for pekin ducks. Archives of Animal Nutrition 55: 315332.Google ScholarPubMed
WENDT, P. and RODEHUTSCORD, M. (2004a) Investigations on the availability of inorganic phosphate from different sources with growing White Pekin ducks. Poultry Science 83: 15721579.CrossRefGoogle ScholarPubMed
WENDT, P. and RODEHUTSCORD, M. (2004b) Studies on the efficiency of two phytase preparations in Pekin ducks. In: 8. Tagung Schweine- und Geflügelernährung, Wittenberg (Germany); Universität Halle-Wittenberg, Halle (Saale), Germany; p 109111. Available at http://www.tehalle.de/pdf/Tagungsband%20Teil%203.pdf.Google Scholar
WENDT, P., TIMMLER, R. and RODEHUTSCORD, M. (2003) Dose-response relationship between a supplemented microbial phytase and utilisation of phosphorus from a maize/soybean meal-based diet in Pekin ducks. Archiv für Geflügelkunde 67: 193197.Google Scholar
WILKIEWICZ-WAWRO, E., SZYPULEWSKA, K. and WAWRO, K. (2005) Age-related changes in tissue component distribution in Muscovy duck carcasses. Archiv für Geflügelkunde 69: 128134.Google Scholar
WPSA (1985) Mineral requirements for poultry – Mineral requirements and recommendations for growing birds. World's Poultry Science Journal 41: 252258.CrossRefGoogle Scholar