Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T10:56:52.293Z Has data issue: false hasContentIssue false

Genetic variation of energy partitioning in laying hens: causes of variation in residual feed consumption

Published online by Cambridge University Press:  23 March 2009

P. Luiting
Affiliation:
Department of Animal Breeding, Agricultural University, PO Box 338, 6700 AH WageningenThe Netherlands
Get access

Abstract

When multiple linear regression of feed consumption on metabolic body weight (MBW), body weight gain (BWG) and egg mass production (EM) is calculated between or within strains of laying hens, a standard deviation of 47–180 kJ metabolizable energy (ME) per day remains unexplained by these effects. This unexplained fraction, called residual feed consumption (RFC), has a heritability of 0-80%. A survey of the literature was performed to quantify this unexplained variation between strains and among individuals within strains of laying hens with respect to some energy metabolism parameters independent of MBW, BWG and EM. Genetic differences in ability to metabolize gross feed energy are found to be of limited magnitude; the coefficient of variation is 1–3%. From calorimetric experiments, the range of heat production (HP) between strains is found to be 44–118 kJ kg−0.75 d−1; variation among individuals within strains is of the same magnitude (standard deviation: 16–125 kJ kg−0.75 d−1). The range of maintenance requirements (MEm) is reported to be 41–113 kJ kg−0.75 d−1; standard deviation among individuals is 23–80 kJ kg−0.75 d−1. Variation of heat increment of production (constituting the difference between HP and MEm) seems to be small. The main component of HP variation and of RFC variation seems to be the variation of MEm: differences in physical activity, feathering density, basal metabolic rate, area of nude skin (comb, wattles, legs), body temperature and body composition. Net energy per g EM does not play an important role in variation of RFC.

Type
Reviews
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosen, T. and Rotenberg, S. (1981) External and internal quality and chemical composition of hen eggs as related to hen age and selection for production traits. Acta Agriculturae Scandinavica 31: 139152CrossRefGoogle Scholar
Arboleda, C.R., Harris, D.L. and Nordskog, A.W. (1976) Efficiency of selection in layer type chickens by using supplementary information on feed consumption. 2. Application to net income. Theoretical and Applied Genetics 48: 7583CrossRefGoogle ScholarPubMed
Balnave, D. (1974) Biological factors affecting energy expenditure. In: Energy Requirements of Poultry (Eds Morris, T.R. and Freeman, B.M.) British Poultry Science, Edinburgh, UK, pp. 2546Google Scholar
Balnave, D., Farrell, D.J. and Cumming, R.B. (1978) The minimum metabolizable energy requirement of laying hens. World's Poultry Science Journal 34: 149154CrossRefGoogle Scholar
Bentsen, H.B. (1979) Energy utilization in egg production. Variation and improvement in the Norwegian laying stock 1969–1977. Scientific Reports of the Agricultural University of Norway 58: No. 32, pp. 15Google Scholar
Bentsen, H.B. (1983a) Genetic variation in feed efficiency of laying hens at constant body weight and egg production. 1. Efficiency measured as a deviation between observed and expected feed consumption. Acta Agriculturae Scandinavica 33: 289304CrossRefGoogle Scholar
Bentsen, H.B. (1983b) Genetic variation in feed efficiency of laying hens at constant body weight and egg production. 2. Sources of variation in feed consumption. Acta Agriculturae Scandinavica 33: 305320CrossRefGoogle Scholar
Bordas, A. and Merat, P. (1975) Enregistrement sur une courte periode de la consommation d'aliment chez la poule pondeuse pour l'étude génétique de l'efficacité alimentaire. Annales de Génétique et de Sélection Animale 7: 331334CrossRefGoogle Scholar
Bordas, A. and Merat, P. (1981) Genetic variation and phenotypic correlations of food consumption of laying hens corrected for body weight and production. British Poultry Science 22: 2533CrossRefGoogle ScholarPubMed
Bordas, A. and Merat, P. (1984) Réponses liées dans une expérience de seléction sur la consommation alimentaire ‘résiduelle’ de coqs et poules Rhode-Island. In: Proceedings of the 17th World Poultry CongressHelsinki, Finland, pp. 106108Google Scholar
Boshouwers, F.M.G. and Nicaise, E. (1985) Automatic gravimetric calorimeter with simultaneous recording of physical activity for poultry. British Poultry Science 26: 531541CrossRefGoogle ScholarPubMed
Burlacu, G. and Baltac, M. (1971) Efficiency of the utilization of energy of food in laying hens. Journal of Agricultural Science, Cambridge 77: 405411CrossRefGoogle Scholar
Byerly, T.C., Kessler, J.W., Gous, R.M. and Thomas, O.P. (1980) Feed requirements for egg production. Poultry Science 59: 25002507CrossRefGoogle Scholar
Chwalibog, A. (1985) Studies on energy metabolism in laying hens. PhD Thesis, Statens Husdyrbrugsforsøg København, Denmark, pp. 139Google Scholar
Conson, M. (1985) Überprüfung einer Methode zur Beurteilung des Gefieders von Legehennen unter Verwendung eines nach verschiedenen Herkünften und Behandlungen strukturierten Tiermaterials. PhD Thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn, FRG, pp. 127Google Scholar
Damme, K. (1984) Genetische und phäntotypische Beziehungen zwischen Produktionsmerkmalen und dem Energiestoffwechsel von Legehennen. PhD Thesis, Technische Universität München-Weihenstephan, FRG, pp. 166Google Scholar
Damme, K. and Pirchner, F. (1984a) Genetic differences of feather loss in layers and effects on production traits. Archiv für Geflügelkunde 48: 215222Google Scholar
Damme, K. and Pirchner, F. (1984b) Predicting daily feed intake of laying hens by supplementary information on wattle, shank and bare body surface. 35th Meeting of the European Association of Animal ProductionDen Haag, Netherlands, G5.32Google Scholar
Damme, K. and Pirchner, F. (1985) Ursachen für den Restfutterverzehr von Legehennen: Unterschieden im Hungerumsatz, dem Federgewicht und Depottfettanteil. 36th Meeting of the European Association of Animal ProductionThessaloniki, Greece, G5.33Google Scholar
Damme, K., El-Sayed, T. and Pirchner, F. (1984) The fasting metabolic rate of white and brown egg layers and broiler dams of different age. Archiv für Geflügelkunde 48: 7781Google Scholar
El-Sayed, T.M. (1988) Schätzung genetischer Parameter des Stoffwechsels verschiedener Legehennenherkünfte und dessen genetische Korrelationen zu Leistungsmerkmalen. PhD Thesis, Technische Universität München-Weihenstephan, FRG, pp. 135Google Scholar
Emmans, G.C. and Dun, P. (1980) Feather loss in layers. ADAS Ministry of Agriculture, Fisheries and Food, Gleadthorpe Experimental Husbandry Farm, Poultry Booklet No.7: 4653Google Scholar
Fairfull, R.W. and Gowe, R.S. (1979) Feed consumption and feed efficiency in selected and control strains of egg stocks under long term selection for a complex of economic traits. In: Selection Experiments in Laboratory and Domestic Animals: the Proceedings of a Symposium (Ed. Robertson, A.) Commonwealth Agricultural Bureau, Slough, UK, pp. 230245Google Scholar
Fairfull, R.W. and Chambers, J.R. (1984) Breeding for feed efficiency: poultry. Canadian Journal of Animal Science 64: 513537CrossRefGoogle Scholar
Farrell, D.J. (1974) General principles and assumptions of calorimetry. In: Energy Requirements of Poultry (Eds Morris, T.R. and Freeman, B.M.) British Poultry Science, Edinburgh, UK, pp. 124Google Scholar
Farrell, D.J. (1975) A comparison of the energy metabolism of two breeds of hens and their cross using respiration calorimetry. British Poultry Science 16: 103113CrossRefGoogle ScholarPubMed
Foster, W.H. (1968a) Variation between and within birds in the estimation of the metabolizable energy content of diets for laying hens. Journal of Agricultural Science, Cambridge 71: 153159CrossRefGoogle Scholar
Foster, W.H. (1968b) The response of Brown Leghorn and Light Sussex laying flocks to dilution of the diet. Record of Agricultural Research 17: 1317Google Scholar
Gonyou, H.W. and Morrison, W.D. (1983) Effects of defeathering and insulative jackets on production by laying hens at low temperatures. British Poultry Science 24: 311317CrossRefGoogle ScholarPubMed
Gous, R.M.Byerly, T.C., Thomas, O.P. and Kessler, J.W. (1978) A partition equation to predict food and energy intake by laying hens. In: Proceedings of the 16th World Poultry Congress 2, Rio de Janeiro, Brazil, pp. 18Google Scholar
Grimbergen, A.H.M. (1970) The energy requirement for maintenance and production of laying hens. Netherlands Journal of Agricultural Science 18: 195206CrossRefGoogle Scholar
Hagger, C. (1977) Phänotypische und genetische Untersuchungen zur Futterverwertung der Legehenne. PhD Thesis, Eidgenössische Technische Hochschule Zürich, Switzerland, pp. 86Google Scholar
Hagger, C. and Abplanalp, H. (1978) Food consumption records for the genetic improvement of income over feed costs in laying flocks of White Leghorn. British Poultry Science 19: 651667CrossRefGoogle Scholar
Heil, G. and Hartmann, W. (1980) Feed wastage in strains of crossbred hens from Leghorn lines selected for egg production and feed efficiency. In: Proceedings of the 6th European Poultry Conference 2, Hamburg, FRG, pp. 147155Google Scholar
Heil, G., Otto, C. and Sodeicat, G. (1982) Zur Unruhe von Legehennen vor der Eiablage bei Haltung in Einzelkäfigen. Archiv für Geflügelkunde 46: 6269Google Scholar
Herremans, M. (1987) Het belang van de bevederingstoestand voor de thermoregulatie en de produktie-efficientie bij leghennen. PhD Thesis, Katholieke Universiteit Leuven, Belgium, pp. 121Google Scholar
Hoffman, L. and Schiemann, R. (1973) Die Verwertung der Futterenergie durch die legende Henne. Archiv für Tierernährung 23: 105132CrossRefGoogle Scholar
Hughes, B.O. (1980) Feather damage in hens caged individually. British Poultry Science 21: 149154CrossRefGoogle ScholarPubMed
Hurnik, J.F.Summers, J.D. and Morrison, W.D. (1973) Some factors influencing feed wastage. Poultry Science 52: 16651667CrossRefGoogle Scholar
Hurnik, J.F., Summers, J.D., Reinhart, B.S. and Swierczewska, E.M. (1977) Effect of age on the performance of laying hens during the first year of production. Poultry Science 56, 222230CrossRefGoogle Scholar
Katle, J., Bentsen, H.B. and Braastad, B.O. (1984) Correlated traits with residual feed consumption. In: Proceedings of the 17th World Poultry CongressHelsinki, Finland, pp. 136138Google Scholar
Kemp, B. (1985) Beschrijving, meetmethoden en energiekosten van activiteit bij legpluimvee. Een literatuuroverzicht. MSc Thesis, Agricultural University Wageningen, Netherlands, pp. 28Google Scholar
Kirchgessner, M. and Voreck, O. (1980) Zur Umsetzbarkeit der Futterenergie bei der Legehenne in Abhängigkeit von der Energie- und Proteinversorgung. Archiv für Geflügelkunde 44: 6166Google Scholar
Leclercq, B., Blum, J.C. and Boyer, J.P. (1977) Signification and genetic control of body weight change in the hen during the laying period. Archiv für Geflügelkunde 41: 121124Google Scholar
Lee, B.D., Morrison, W.D., Leeson, S. and Bailey, H.S. (1983) Effects of feather cover and insulative jackets on metabolic rate of laying hens. Poultry Science 62: 11291132CrossRefGoogle ScholarPubMed
Leeson, S. and Morrison, W.D. (1978) Effect of feather cover on feed efficiency in laying birds. Poultry Science 57: 10941096CrossRefGoogle Scholar
Leeson, S., Lewis, D. and Shrimpton, D.H. (1973) Multiple linear regression equations for the prediction of food intake in the laying fowl. British Poultry Science 14: 595608CrossRefGoogle ScholarPubMed
MacLeod, M.G. (1984) Factors influencing the agreement between thermal physiology measurements and field performance in poultry. Archiv für Experimentelle Veterinärmedizin 38: 399410Google ScholarPubMed
MacLeod, M.G. and Jewitt, T.R. (1984) Circadian variation in the heat production rate of the domestic fowl, Gallus domesticus: effects of limiting feeding to a single daily meal. Comparative Biochemistry and Physiology 78A: 687690CrossRefGoogle Scholar
MacLeod, M.G. and Jewitt, T.R. (1988) Maintenance energy requirements of laying hens: a comparison of measurements made by two methods based on indirect calorimetry. British Poultry Science 29: 6374CrossRefGoogle Scholar
MacLeod, M.G. and Shannon, D.W.F. (1978) Effects of food intake regulation on the energy metabolism of laying hens. British Poultry Science 19: 349363CrossRefGoogle Scholar
MacLeod, M.G., Tullett, S.G. and Jewitt, T.R. (1979) Effects of food intake regulation on the energy metabolism of hens and cockerels of a layer strain. British Poultry Science 20: 521531CrossRefGoogle ScholarPubMed
MacLeod, M.G., Jewitt, T.R., White, J., Verbrugge, M. and Mitchell, M.A. (1982) The contribution of locomotor activity to energy expenditure in the domestic fowl. In: Proceedings of the 9th Symposium of Energy Metabolism of Farm Animals, Lillehammer, Norway, EAAP Publication No. 29, pp. 197200Google Scholar
MacLeod, M.G., Jewitt, T.R. and Anderson, J.E.M. (1988) Energy expenditure and physical activity in domestic fowl kept on standard and interrupted lighting patterns. British Poultry Science 29: 231244CrossRefGoogle ScholarPubMed
McDonald, M.W. (1985) Genetic variation for food consumption in Australian layers. In: Proceedings of the 5th AAABG ConferenceSydney, Australia, pp. 345347Google Scholar
Merat, P., Bordas, A. and Ricard, F.H. (1980) Composition anatomique, production d'oeufs et efficacité alimentaire de poules pondeuses. Correlations phenotypiques. Annales de Génétique et de Sélection Animale 12: 191200CrossRefGoogle Scholar
Mills, A.D., Wood-Gush, D.G.M. and Hughes, B.O. (1985) Genetic analysis of strain differences in pre-laying behaviour in battery cages. British Poultry Science 26: 187197CrossRefGoogle ScholarPubMed
Mitchell, M.A., MacLeod, M.G. and Raza, A. (1986) The effects of ACTH and dexamethasone upon plasma thyroid hormone levels and heat production in the domestic fowl. Comparative Biochemistry and Physiology 85A: 207215CrossRefGoogle Scholar
Morrison, W.D. and Leeson, S. (1978) Relationship of feed efficiency to carcass composition and metabolic rate in laying birds. Poultry Science 57: 735739CrossRefGoogle Scholar
Neill, A.R., Reichmann, K.G. and Connor, J.K. (1977) Biochemical, physiological and production indices related to fat metabolism in the laying fowl at various stages of physiological development. British Poultry Science 18: 315324CrossRefGoogle ScholarPubMed
Nesheim, M.C. (1975) Genetic variation in nutritional requirements of poultry. In: The Effect of Genetic Variance on Nutritional Requirements of Animals: Proceedings of a Symposium, National Academy of SciencesWashington DC, USA, pp. 4787Google Scholar
Neumann, F.J. and Kirchgessner, M. (1983a) Effects of different levels of dietary energy and protein supply on live weight and on deposition of protein and energy in the body of laying hens. Archiv für Geflügelkunde 47: 186191Google Scholar
Neumann, F.J. and Kirchgessner, M. (1983b) Effects of different levels of dietary energy and protein supply on egg production of laying hens. Archiv für Geflügelkunde 47: 201206Google Scholar
Neumann, F.J. and Kirchgessner, M. (1984) Zum Einfluss einer unterschiedlichen Energie-und Rohproteinversorgung auf die Umsetzbarkeit der Futterenergie bei Legehennen. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 51: 106111CrossRefGoogle Scholar
Newcombe, M. and March, B.E. (1988) Food intake and abdominal adipose tissue in White Leghorn hens fed diets of different protein and energy concentrations. British Poultry Science 29: 311323CrossRefGoogle ScholarPubMed
Nichelmann, M., Baranyiova, E., Goll, R. and Tzschentke, B. (1986) Influence of feather cover on heat balance in laying hens (Gallus domesticus). Journal of Thermal Biology 11: 121126CrossRefGoogle Scholar
O'Neill, S.J.B. and Jackson, N. (1974) The heat production of hens and cockerels maintained for an extended period of time at a constant environmental temperature of 23°C. Journal of Agricultural Science, Cambridge 82: 549552CrossRefGoogle Scholar
Pauw, R. (1987) Analyse verschiedener Selektionskriterien zur Effizienzbewertung bei Legehennen. PhD Thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn, FRG, pp. 165Google Scholar
Richards, S.A. (1977) The influence of loss of plumage on temperature regulation in laying hens. Journal of Agricultural Science, Cambridge 89: 393398CrossRefGoogle Scholar
Romijn, C. and Lokhorst, W. (1961) Some aspects of energy metabolism in birds. Proceedings of the 2nd Symposium on Energy Metabolism of Farm Animals, Wageningen, Netherlands, EAAP Publication No.10, pp. 4959Google Scholar
Rose, S.P. and Campbell, V. (1986) Fatness in laying hens and induced moulting regimes. British Poultry Science 27: 369377CrossRefGoogle Scholar
Sainz, F., Gonzalez, M., Roca, P. and Alemany, M. (1983) Physical and chemical nature of eggs from six breeds of domestic fowl. British Poultry Science 24: 301309CrossRefGoogle Scholar
Schild, H.J. (1983) Genetische Parameter von Leistungs- und Eiqualitätsmerkmalen von Legehennen in der zweiten Legeperiode. PhD Thesis, Technische Universität München, FRG, pp. 130Google Scholar
Tauson, R. (1979) Feed waste by caged layers. 1. A method of estimating the technical feed waste in different cages and feeding systems. Swedish Journal of Agricultural Research 9: 8393Google Scholar
Tauson, R. and Svensson, S.A. (1980) Influence of plumage condition on the hen's feed requirement. Swedish Journal of Agricultural Research 10: 3539Google Scholar
Tawfik, E.S., Horst, P. and Petersen, J. (1976) Untersuchungen an Legehennen über genetische Fundierung und Beziehungen von Legeleistung, Legereife, Körpergewicht und Kriterien der Eibeschaffenheit. 2. Mitteilung: Phänotypische und genetische Beziehungen. Archiv für Geflügelkunde 45: 166175Google Scholar
Tixier, M., Bordas, A. and Merat, P. (1988) Divergent selection for residual feed intake in laying hens: effects on growth and fatness. In: Leanness in Domestic Birds: Genetic, Metabolic and Hormonal Aspects (Eds Leclercq, B. and Whitehead, C.C.) Butterworth, Guildford, UK, pp. 129132CrossRefGoogle Scholar
Tullett, S.G., MacLeod, M.G. and Jewitt, T.R. (1980) The effects of partial defeathering on energy metabolism in the laying fowl. British Poultry Science 21: 241245CrossRefGoogle ScholarPubMed
Van Es, A.J.H. (1980) Energy costs of protein deposition. In: Protein Deposition in Animals (Eds Buttery, P.J. and Lindsay, D.B.) Butterworth, London, UK and Boston, USA, pp. 215224CrossRefGoogle Scholar
Van Kampen, M. (1981) Water balance of colostomised and non-colostomised hens at different ambient temperatures. British Poultry Science 22: 1723CrossRefGoogle ScholarPubMed
Van Kampen, M. and Romijn, C. (1970) Energy balance and heat regulation in the White Leghorn fowl. In: Proceedings of the 5th Symposium on Energy Metabolism in Farm Animals, Vitznau, Switzerland, EAAP Publication No.13, pp. 213216Google Scholar
Vogt, H. and Harnisch, S. (1983) Veränderung der Zusammensetzung der Legehennenkörper während des Legejahres. Archiv für Geflügelkunde 47: 142147Google Scholar
Waring, J.J. and Brown, W.O. (1965) A respiration chamber for the study of energy utilization for maintenance and production in the laying hen. Journal of Agricultural Science, Cambridge 65: 139146CrossRefGoogle Scholar
Waring, J.J. and Brown, W.O. (1967) Calorimetric studies on the utilization of dietary energy by the laying White Leghorn hen in relation to plane of nutrition and environmental temperature. Journal of Agricultural Science, Cambridge 68: 149155CrossRefGoogle Scholar
Wing, T.L. and Nordskog, A.W. (1982) Use of individual records in a selection programme for egg production efficiency. 1. Heritability of the residual component of feed efficiency. Poultry Science 61: 226230CrossRefGoogle Scholar
Zein-El-Dein, A., Bordas, A. and Merat, P. (1985) Sélection divergente pour la composante ‘residuelle’ de la consommation alimentaire des poules pondeuses: effets sur la composition corporelle. Archiv für Geflügelkunde 49: 158160Google Scholar