Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T02:58:38.211Z Has data issue: false hasContentIssue false

Effect of phytase on protein and amino acid digestibility and energy utilisation*

Published online by Cambridge University Press:  18 September 2007

A.K. Kies
Affiliation:
DSM Food Specialties, P.O. Box 1, 2600 MA Delft, The Netherlandsand
K.H.F. Van Hemert
Affiliation:
DSM Food Specialties, P.O. Box 1, 2600 MA Delft, The Netherlandsand
W.C. Sauer
Affiliation:
University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta T6G 2P5, Canada
Get access

Abstract

Phytate is a molecule rich in phosphorus (P). However, the P in phytate is of low availability to monogastric animals because they lack the proper enzyme system to hydrolyse phytate. Consequently, there is a high P concentration in the manure from animals fed on diets containing phytate, and this can lead to pollution of the environment. Because phytate can complex with minerals, starch, proteins and digestive enzymes, it also has anti-nutritional properties. Limiting the P output by monogastric animals, by increasing the digestibility (availability) of the P in the diet by hydrolysing phosphate from phytate, was the original reason for developing the microbial phytase, Natuphos®. It has been shown in many studies that P excretion by pigs and poultry can be reduced by 30% by including phytase in their diets. The digestibility of other nutrients bound to phytate can also be increased considerably by hydrolysis of the phytate molecule by phytase. A number of studies have been performed in poultry and pigs to determine the effect on amino acid digestibility of adding microbial phytase to the feed. In general, an increase of 1-3% has been reported. It was shown by meta-analysis that these improvements were significant for most amino acids at a phytase supplementation rate of 500 FTU/kg diet. In piglets and broilers an improvement in performance of 1.5-3.0% was often observed when phytase was included in the diet, even if the diet met the digestible/available P requirement. This improvement in performance cannot be explained by improvements in amino acid digestibility alone. It has been suggested that there is an effect on energy utilisation as well, and this has now been confirmed in studies with poultry. To apply this information in feed compounding, matrix values are proposed for use by the industry in linear programming. Depending on many factors, feed costs can be decreased by up to EUR 3.50 (US$ 3.00)/tonne by the addition of phytase to diets that are not limiting in P. Limiting the total P content in the diet to a lower concentration can increase the economic advantage of adding phytase. Processing of feed, especially pelleting, can reduce the activity of phytase. It is therefore necessary to protect the enzyme and this can be very difficult, especially when it is important that the enzyme should also become rapidly available to the animal. The product Natuphos® 10000 G fulfils these requirements. The broadness of the impact of this enzyme on the nutritional value of feed makes it a really remarkable enzyme.

Type
Reviews
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper is a revised version of the paper “Phytase: a remarkable enzyme” by A. Kies and K. Van Hemert (2000) published in Selected Topics in Animnl Nutrition, Biochemistry and Physiology. Reviews Presented at the Symposium on the Occasion of the Retirement of Dr R. R. Marquardt (Sauer, W. and He, J., Eds) on 27 September 2000, Winnipeg and Edmonton, Canada.

References

Beers, S. and Jongbloed, A.W. (1992) Effect of supplementary Aspergillus niger phytase in diets for piglets on their performance and apparent digestibility of phosphorus. Animal Production 55: 425430Google Scholar
Conover, W.J. (1980) Practical Nonparametric Statistics. 2nd Edn. J. Wiley & Sons, New YorkGoogle Scholar
Eeckhout, W. and De Paepe, M. (1992a) Phytase de blé, phytase microbienne et digestibilité apparente du phosphore d'un aliment simple pour porcelets. Revue de I'Agriculture-Land-bouwtijdschrift (Numéro spécial, ‘Fumure et environnement’) 45: 195207Google Scholar
Eeckhout, W. and De Paepe, M. (1992b) Comparaison de l'effet de 500 unités de phytase de blé et d'une phytase microbienne sur la digestibilité apparente du phosphore d'un aliment pour porcs à l'engrais. Revue de I'Agriculture-Landbouwtijdschrift (Numéro spécial, ‘Fumure et environnement’) 45: 209216Google Scholar
Engelen, A.J., Van Der Heeft, F.C., Ransdorp, P.H.G. and Smit, E.L.C. (1994) Simple and rapid determination of phytase activity. Journal AOAC International 77: 760764CrossRefGoogle ScholarPubMed
Frapin, D. and Nys, Y. (1995) Relative efficiency of microbial and vegetal phytases and additional effect on phosphorus availability in broilers. In: Proceedings of the 10th European Symposium on Poultry NutritionWPSAAntalya,Turkey, pp 352–354Google Scholar
Huyghebaert, G., De Groote, G. and Geerse, C. (1992) Influence d'une phytase microbienne sur l'utilisation du phosphore par les poulets de chair. 1. Influence sur la digestibilité du P et du Ca. Revue de l'Agriculture-Landbouwtijdschrift (Numéro spécial, ‘Fumure et environnement’) 45: 217228Google Scholar
Jongbloed, A.W. (1987) Phosphorus in the feeding of pigs. PhD dissertation, Wageningen Agricultural University, The NetherlandsGoogle Scholar
Jongbloed, A.W., Everts, H. and Kemme, P.A. (1994) Verteerbaar fosfor normen voor varkens. CVB Documentatierapport no. 10. Centraal Veevoederbureau, Lelystad, The NetherlandsGoogle Scholar
Jongbloed, A.W., De Jonge, L.H., Kemme, P.A., Mroz, Z. and Kies, A.K. (1997) Non-mineral related effects of phytase in pig diets. In: Proceedings of the 6th Forum on Animal NutritionBASE Germany, pp. 92–106Google Scholar
Kies, A.K. (1997) Niet-fosfor effecten van Natuphos®. In: Proceedings of the Symposium “Enzymen en organische zuren in de Nederlandse veevoerindustrie”,BASF, Arnhem,The Netherlands, pp. 1–5Google Scholar
Kies, A.K. (1998) The influence of Natuphos® phytase on the bioavailability of protein in swine. In: Proceedings of the BASF Technical Symposium,World Pork Expo, Des Moines,Iowa, pp. 1–12Google Scholar
Kies, A.K. and Schutte, J.B. (1997) The effect of microbial phytase on broiler performances. In: Proceedings of the 11th European Symposium on Poultry Nutrition,WPSA, Faaborg,Denmark, pp. 453–455Google Scholar
Kies, A.K., Van Hemert, K.H.F., Selle, P.H. and Kemme, P.A. (1997) The protein effect of phytase. Feed Compounder, December, pp. 2026Google Scholar
Kornegay, E.T. (1999) Application of phytase for retention of nonphosphorus nutrients. In: Proceedings of the Maryland Nutrition Conference, pp. 83-103Google Scholar
Kwakkel, R.P., Van Der Togt, P.L. and Klein Holkenborg, A.B.M. (2001) Bio-efficacy of two phytase formulations supplemented to a corn-soybean broiler diet. In: Proceedings of the 3rd European Symposium on Feed Enzymes (Van Hartingsveldt, W., Ed.), TNO, Zeist,The Netherlands (in press)Google Scholar
Nelson, T.S., Shieh, T.R., Wodzinski, R.J. and Ware, J.H. (1968) The availability of phytate phosphorus in soybean meal before and after treatment with a mold phytase. Poultry Science 47: 18421848CrossRefGoogle ScholarPubMed
Potkanski, A. (2000) The comparison of plant and microbial phytase in the feeding. In: Proceedings of the International Symposium on Phytase in Animal Nutrition (Grela, E.R., Ed.), Lublin,Poland, pp. 21–27Google Scholar
Rapp, C. (1998) Untersuchungen an fistulierten Schweinen zum Phytatabbau im Chymus verschied-ener Bereiche des Magen Darmtraktes durch native und supplementierte mikrobielle Phytasen. PhD dissertation, University of Hohenheim, GermanyGoogle Scholar
Ravindran, V., Bryden, W.L. and Kornegay, E.T. (1995) Phytates: occurrence, bioavailability and implications in poultry nutrition. Poultry and Avian Biology Reviews 6: 125143Google Scholar
Ravindran, V., Cabahug, S., Ravindran, G. and Bryden, W.L. (1999) Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poultry Science 78: 699706CrossRefGoogle ScholarPubMed
Ravindran, V., Selle, P.H., Ravindran, G., Morel, P.C.H., Kies, A.K. and Bryden, W.L. (2001) Influence of supplemental microbial phytase on the performance, apparent metabolizable energy and ileal amino acid digestibility of broilers fed a lysine-deficient diet. Poultry Science 80: 338344CrossRefGoogle Scholar
Rutherford, S.M., Edwards, A.C. and Selle, P.H. (1997) Effect of phytase on lysine-rice pollard complexes. In: Manipulating Pig Production VI. Australasian Pig Science Association p. 248Google Scholar
Schindler, B. (1999) Untersuchungen zur vergleichenden Wirksamkeit und zur Additivitat pflanzlicher und mikrobieller Phytasen beim wachsenden Schwein. PhD dissertation, University of Hohenheim, GermanyGoogle Scholar
Schutte, J.B., and Kies, A.K. (1995) Effect of dietary supplementation of microbial phytase on performance of broiler chicks. In: Proceedings of the 2nd European Symposium on Feed Enzymes (Van Hartingsveldt, W., Hessing, M., Van der Lugt, J.P. and Somers, W.A.C., Eds.), TNO, Zeist,The Netherlands, pp. 279–280Google Scholar
Simons, P.C.M., Versteegh, H.A.J., Jongbloed, A.W., Kemme, P.A., Slump, P., Bos, K.D., Wolters, M.G.E., Beudeker, R.F. and Verschoor, G.J. (1990) Improvement of phosphorus availability by microbial phytase in broilers and pigs. British Journal of Nutrition 64: 525540CrossRefGoogle ScholarPubMed
Slngh, M. and Krikorian, A.D. (1982) Inhibition of trypsin activity by phytate. Journal of Agricultural Food Chemistry 30: 799800Google Scholar
Thompson, L.U. (1986) Phytate: a factor influencing starch digestibility and blood glucose response. In: Phytic Acid Chemistry nnd Applications (Graf, E., Ed.), Pilatus Press, MN, pp. 173194Google Scholar
Van Doesum, J. (2001) Enzyme formulations and nutritional aspects. Factors influencing choice of type of formulation. In: Proceedings of the 3rd European Symposium on Feed Enzymes (Van Hartingsveldt, W., Ed.), TNO, ZeistThe Netherlands (in press)Google Scholar
Van Gorcum, R.F.M., Van Hartingsveldt, W., Van Paridon, P.A., Veenstra, A.E., Luiten, R.G.M. and Selten, G.C.M. (1995) Cloning and expression of phytase from Aspergillus. US patent 5,436,156Google Scholar
Yi, Z., and Kornegay, E.T. (1996) Sites of phytase activity in the gastrointestinal tract of young pigs. Animal Feed Science Technology 61: 361368CrossRefGoogle Scholar
Zhang, X., Roland, D.A., Mcdaniel, G.R. and Rao, S.K. (1999) Effect of Natuphos® phytase supplementation to feed on performance and ileal digestibility of protein and amino acids of broilers. Poultry Science 78: 15671572CrossRefGoogle ScholarPubMed