Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T08:33:18.677Z Has data issue: false hasContentIssue false

The Connecticut and Cornell Randombred Populations of Chickens1

Published online by Cambridge University Press:  18 September 2007

Steven C. King
Affiliation:
Poultry Research Branch, Animal Husbandry Research Division, Agricultural Research Service, United States Department of Agriculture, at Purdue University, Lafayette, Indiana, U.S.A.
James R. Carson
Affiliation:
Poultry Science Department. University of Connecticut, Storrs, Connecticut, U.S.A.
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, A. E., Moore, C. H. and Warren, D. C. 1955. The evaluation of new methods for the improvement of quantitative characteristics. Cold Spring Harbor Symposia on. Quant. Biol. 20: 197212.CrossRefGoogle Scholar
Briles, W. E., Allen, Courtney P. and Millen, T. W. 1957. The B blood group system of chickens. I. Heterozygosity in closed populations. Genetics 42: 631648.CrossRefGoogle Scholar
Clayton, G. A., Morris, J. A. and Alan Robertson, , 1957. An experimental check on quantitative genetical theory. Jour. Genetics 55: 131151.CrossRefGoogle Scholar
Cock, A. G., 1956. Segregation of hypostatic colour genes within inbred lines of chickens. Poultry Sci. 35: 504515.CrossRefGoogle Scholar
Crow, J., and Kimura, M. 1954 and 1955. Some genetic problems in natural populations. Proc. 3rd Berkeley Symposium on Math. Statistics and Probability. pp. 122.CrossRefGoogle Scholar
Dobzhansky, , Theodosius, , 1947. Adaptive changes induced by natural selection in wild populations of Drosophila. Evolution 1: 116.CrossRefGoogle Scholar
Falconer, D. S., 1953. Selection for large and small size in mice. Jour. Genetics 51: 470501.CrossRefGoogle Scholar
Falconer, D. S., 1954. Asymmetrical response in selection experiments. I.U.B.S. Symposium on Genetics of Population Structure, Series B. No. 15: 1641.Google Scholar
Goodwin, K. G. E.Dickerson, G. E. and Lamoreux, W. F. 1955. A technique for measuring genetic progress in poultry breeding experiments. Poultry Sci. 34: 1197.Google Scholar
Gowe, R. S., 1956. Environment and poultry breeding problems. II. A comparison of the egg production of 7 S. C. White Leghorn strains housed in laying batteries and floor pens. Poultry Sci. 35: 430435.CrossRefGoogle Scholar
Gowe, A. S., and Johnson, A. S., 1956. The performance of a control strain of S. C. White Leghorn stock over four generations on test at several locations. Poultry Sci. 35: 1146.Google Scholar
Gowe, R. S., and Wakely, W. J. 1954. Environment and Poultry breeding problems. I. The influence of several environments on the egg production and viability of different genotypes. Poultry Sci. 33: 691703.CrossRefGoogle Scholar
Gowell, G. M., 1903. Breeding for egg production. Maine Agr. Exp. Sta. Bull. 93.Google Scholar
Hutt, F. B., and Cole, R. K. 1947. Genetic control of lymphomatosis in the fowl. Science 106: 379384.CrossRefGoogle ScholarPubMed
Hutt, F. B., and Cole, R. K., 1955. Multiple shifts for testing cockerels. Poultry Sci. 34: 271283.CrossRefGoogle Scholar
Kimura, M., 1955. Stochastic processes and distribution of gene frequencies under natural selection. Cold Spring Harbor Symposia Quant. Biol. 20: 3351.CrossRefGoogle ScholarPubMed
Lerner, I. M., 1950. Population Genetics and Animal Improvement. Cambridge University Press, London, England. pp. 183184.Google Scholar
Lowry, , Dorothy, C., Lerner, I. Michael and Taylor, Lewis W., 1956. Intra-flock genetic merit under floor and cage managements. Poultry Sci. 35: 10341043.CrossRefGoogle Scholar
Marble, D. R., and Hall, G. O. 1931. A statistical analysis of the results of breeding high-line and low-line Leghorns. Cornwell Univ. Agr. Exp. Sta. Bull. 533.Google Scholar
Merrell, , David, J., 1953. Selective mating as a cause of gene frequency changes in laboratory populations of Drosophila melanogaster. Evolution 7: 287296.CrossRefGoogle Scholar
Merritt, E. S., and Gowe, R. S. 1956. Environment and poultry breeding problems. III. The performance of 8 crossbred and 2 purebred broiler strains at three locations. Canadian Jour. Agr. Sci. 36: 7280.Google Scholar
Pearl, , Raymond, , 1911. Breeding poultry for egg production. Maine Agr. Exp. Sta. Bull. 192.Google Scholar
Robertson, , Forbes, W., 1955. Selection response and the properties of genetic variation. Cold Spring Harbor Symposia on Quant. Biol. 20: 166177.CrossRefGoogle ScholarPubMed
Robertson, F. W., and Reeve, E. C. R. 1952. Studies in quantitative inheritance. I. The effects of selection of wing and thorax length in Drosophila melanogaster. Jour. Genetics 50: 414448.CrossRefGoogle Scholar
Skaller, F., 1956. The Hagedoorn “Nucleus-System” of breeding—A critical evaluation based on an experiment with poultry. Proc. Australian Soc. An. Prod. 1: 165176.Google Scholar
Wright, S., 1931. Evolution in Mendelian populations. Genetics 16: 97159.CrossRefGoogle ScholarPubMed
Wright, S., 1937. The distribution of gene frequencies in populations. Proc. Nat. Acad. Sci. 23: 307320.CrossRefGoogle ScholarPubMed
Wright, S., 1948. On the roles of directed and random changes in gene frequency in the genetics of populations. Evolution 2: 279294.CrossRefGoogle ScholarPubMed
Wright, S., 1955. Classification of the factors of evolution. Cold Spring Harbor Symposia Quant. Biol. 20: 1624.Google Scholar
Yamada, , Yukio, , Bohren, B. B. and Crittenden, L. B. 1958. Genetic analysis of a White Leghorn closed flock apparently plateaued for egg production. Poultry Sci. 37: 565580.CrossRefGoogle Scholar