Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T04:13:46.494Z Has data issue: false hasContentIssue false

Breeding for feed efficiency and adaptation to feed in poultry

Published online by Cambridge University Press:  05 September 2008

B. CARRÉ*
Affiliation:
Unité de Recherches Avicoles, INRA, 37380 Nouzilly
S. MIGNON-GRASTEAU
Affiliation:
Unité de Recherches Avicoles, INRA, 37380 Nouzilly
H. JUIN
Affiliation:
UE EASM, INRA, Le Magneraud, 17700 Surgères, France
*
Corresponding author: [email protected]
Get access

Abstract

The following paper reviews the current data regarding the physiological origins of variations in feed efficiency, and the effects of genetic selection on energy balance parameters. Effects of diet composition on response to genetic selection are considered by focusing on three feed factors: protein concentration, energy concentration and utilisation of specific ingredients. Analyses of effects of genetic selection on responses to diet composition highlight the problems associated with the increased dietary protein concentrations needed by the latest commercial broilers as a result of genetic selection. The advantages and disadvantages in producing lean birds are discussed from the point of view of feed efficiency and adaptation to feed variation. Lastly, the problems of variation in digestibility resulting from broiler selection are discussed.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALLEMAN, F. (1999) Etude du catabolisme des acides aminés chez deux lignées de poulets génétiquement maigres ou gras. Thèse de l'Université de Tours, Tours(F): Université François Rabelais.Google Scholar
ALLEMAN, F., MICHEL, J., CHAGNEAU, A.M. and LECLERCQ, B. (1999) Comparative responses of genetically lean and fat broiler chickens to dietary threonine concentration. British Poultry Science 40: 485-490.CrossRefGoogle ScholarPubMed
ALLEMAN, F., MICHEL, J., CHAGNEAU, A.M. and LECLERCQ, B. (2000) The effects of dietary protein independent of essential amino acids on growth and body composition in genetically lean and fat chickens. British Poultry Science 41: 214-218.CrossRefGoogle ScholarPubMed
BARBATO, G.F. (1991) Genetic architecture of growth curve parameters in chickens. Theoretical and Applied Genetics 83: 24-32.CrossRefGoogle ScholarPubMed
BIELY, J. and MARCH, B.E. (1967) Calcium and vitamin D in broiler rations. Poultry Science 46: 223-232.CrossRefGoogle ScholarPubMed
BORDAS, A., MONNET, L.E. and MÉRAT, P. (1980) The naked neck gene, laying performance and nutritional efficiency at different temperatures in the fowl. Annales de Génétique et de Sélection Animale 12: 343-361.CrossRefGoogle Scholar
CAHANER, A. (1988) Experimental divergent selection on abdominal fat in broilers - parental female and male type lines and their crosses. In: LECLERCQ, B. & WHITEHEAD, C.C. (Eds) Leanness in domestic birds: genetic, metabolic and hormonal aspects, pp. 71-86, Tiptree, Essex (UK): Butterworths & Co. (Publishers) Ltd.Google Scholar
CARRÉ, B. (2001) Evaluation de la valeur énergétique des aliments des oiseaux d'élevage. In: 4èmes Journées de la Recherche Avicole, pp. 123-130, Paris (F): ITAVI.Google Scholar
CARRÉ, B., MIGNON-GRASTEAU, S., SVIHUS, B., PÉRON, A., BASTIANELLI, D., GOMEZ, J., BESNARD, J. and SELLIER, N. (2005) Nutritional effects of feed form, and wheat compared to maize, in the D+ and D- chicken lines selected for divergent digestion capacity. Proceedings of the 15th European Symposium on Poultry Nutrition, pp. 42-44, Budapest (H): WPSA.Google Scholar
CARRÉ, B., MIGNON-GRASTEAU, S., PÉRON, A., JUIN, H. and BASTIANELLI, D. (2007) The wheat value: improvements by feed technology, plant breeding and animal genetics. World's Poultry Science Journal 63: 585-596.CrossRefGoogle Scholar
CHAMBERS, J.R. (1990) Genetics of growth and meat production in chickens. In: CRAWFORD, R.D. (ed) Poultry breeding and genetics, pp. 599-643, Amsterdam (NL): Elsevier.Google Scholar
DAUN, J.K. (2004) Quality of genetically modified (GM) and conventional varieties of canola (spring oilseed rape) grown in western Canada, 1996-2001. Journal of Agricultural Science 142: 273-280.CrossRefGoogle Scholar
DEEB, N. and CAHANER, A. (1999) The effects of naked neck genotypes, ambient temperature, and feeding status and their interactions on body temperature and performance of broilers. Poultry Science 78: 1341-1346.CrossRefGoogle ScholarPubMed
DUNNINGTON, E.A. and SIEGEL, P.B. (1986a) Feather weight of early (k+) and late (K) feathering young adult broilers. Poultry Science 65: 1863-1865.CrossRefGoogle Scholar
DUNNINGTON, E.A. and SIEGEL, P.B. (1986b) Sex-linked feathering alleles (K, k+) in chicks of diverse genetic backgrounds. 1. Body temperatures and body weights. Poultry Science 65: 209-214.CrossRefGoogle Scholar
ELLISON, T. (1965) Effect of dextroamphetamine on growth and feed efficiency in broilers. Poultry Science 44: 896-898.CrossRefGoogle ScholarPubMed
FAIRFULL, R.W. and CHAMBERS, J.R. (1984) Breeding for feed efficiency: poultry. Canadian Journal of Animal Science 64: 513-527.CrossRefGoogle Scholar
FASINA, Y.O. and CAMPBELL, G.L. (1997) Whole canola/pea and whole canola/canola meal blends in diets for broiler chickens 2. Determination of optimal inclusion levels. Canadian Journal of Animal Science 77: 191-195.CrossRefGoogle Scholar
FENWICK, G.R. and CURTIS, R.F. (1980) Rapeseed meal in rations for laying hens: a review of the effect on egg quality. Journal of the Science of Food and Agriculture 31: 515-525.CrossRefGoogle Scholar
FIGUEIREDO, D.F., MURAKAMI, A.E., PEREIRA, M.A.S.S., FURLAN, A.C. and TORAL, F.L.B. (2003) Desempenho e morfometria da mucosa de duodeno de frangos de corte alimentados com farelo de canola, durante o periodo inicial. Revista Brasileira de Zootecnia 32: 1321-1329.CrossRefGoogle Scholar
FISHER, C. (1984) Fat deposition in broilers. Fats in animal nutrition. Proceedings of the 37th Nottingham Easter School (J. Wiseman ed), pp. 437-470, London (UK): Butterworths.CrossRefGoogle Scholar
FOTSA, J. C., MÉRAT, P. and BORDAS, A. (2001) Effect of the slow (K) or rapid (k+) feathering gene on body and feather growth and fatness according to ambient temperature in a Leghorn x brown egg type cross. Genetics, Selection, Evolution 33: 659-670.CrossRefGoogle Scholar
FRANCESCH, M. and BRUFAU, J. (2004) Nutritional factors affecting excreta/litter moisture and quality. World's Poultry Science Journal 60: 64-75.CrossRefGoogle Scholar
FREEMAN, B.M. (1971) Body temperature and thermoregulation. In: BELL, D.J. &FREEMAN, B.M. (Eds) Physiology and biochemistry of the domestic fowl, Vol. 2, pp. 1115-1151, London, New York: Academic Press.Google Scholar
GABARROU, J.F., GERAERT, P.A., PICARD, M. and BORDAS, A. (1997) Diet-induced thermogenesis in cockerels is modulated by genetic selection for high or low residual feed intake. Journal of Nutrition 127: 2371-2376.CrossRefGoogle ScholarPubMed
GABARROU, J.F., GERAERT, P.A., FRANCOIS, N., GUILLAUMIN, S., PICARD, M. and BORDAS, A. (1998) Energy balance of laying hens selected on residual food consumption. British Poultry Science 39: 79-89.CrossRefGoogle ScholarPubMed
GARCÍA, V., GOMEZ, J., MIGNON-GRASTEAU, S., SELLIER, N. and CARRÉ, B. (2007) Effects of xylanase and antibiotic supplementations on the nutritional utilization of a wheat diet in growing chicks from genetic D+ and D- lines selected for divergent digestion efficiency. Animal 1: 1435-1442.CrossRefGoogle Scholar
GERAERT, P.A., MACLEOD, M.G., LARBIER, M. and LECLERCQ, B. (1990) Nitrogen metabolism in genetically fat and lean chickens. Poultry Science 69: 1911-1921.CrossRefGoogle ScholarPubMed
GOUS, R.M. (2007) Predicting nutrient responses in poultry: future challenges. Animal 1: 57-65.CrossRefGoogle ScholarPubMed
HONKATUKIA, M., REESE, K., PREISINGER, R., TUISKULA-HAAVISTO, M., WEIGEND, S., ROITO, J., MAKI-TANILA, A. and VILKKI, J. (2005) Fishy taint in chicken eggs is associated with a substitution within a conserved motif of the FMO3 gene. Genomics 86: 225-232.CrossRefGoogle ScholarPubMed
INRA, (1984) L'alimentation des animaux monogastriques: porc, lapin, volailles. (J.C. Blum ed), Paris (F): INRA.Google Scholar
KALINOWSKI, A., MORAN, E.T. and WYATT, C. (2003a) Methionine and cystine requirements of slow- and fast-feathering male broilers from zero to three weeks of age. Poultry Science 82: 1423-1427.CrossRefGoogle ScholarPubMed
KALINOWSKI, A., MORAN, E.T. and WYATT, C.L. (2003b) Methionine and cystine requirements of slow- and fast-feathering broiler males from three to six weeks of age. Poultry Science 82: 1428-1437.CrossRefGoogle ScholarPubMed
KRETZSCHMAR, K., REESE, K., HONKATUKIA, M., EDING, H., PREISINGER, R., KARL, H., DANICKE, S. and WEIGEND, S. (2007) Effect of Flavin-containing monooxygenase (FMO3) genotype on trimethylarnine (TMA) content in the chicken egg yolk. Archiv für Geflügelkunde 71: 200-206.Google Scholar
LECLERCQ, B. (1983) The influence of dietary protein content on the performance of genetically lean or fat growing chickens. British Poultry Science 24: 581-587.CrossRefGoogle ScholarPubMed
LECLERCQ, B. (1988) Genetic selection of meat-type chickens for high or low abdominal fat content. In: LECLERCQ, B. & WHITEHEAD, C.C. (Eds) Leanness in domestic birds: genetic, metabolic and hormonal aspects, pp. 25-40, Tiptree, Essex (UK): Butterworths & Co. (Publishers) Ltd.Google Scholar
LECLERCQ, B. and GUY, G. (1991) Further investigations on protein requirement of genetically lean and fat chickens. British Poultry Science 32: 789-798.CrossRefGoogle ScholarPubMed
LECLERCQ, B., CHAGNEAU, A.M., COCHARD, T., HAMZAOUI, S. and LARBIER, M. (1993) Comparative utilisation of sulphur-containing amino acids by genetically lean or fat chickens. British Poultry Science 34: 383-391.CrossRefGoogle ScholarPubMed
LECLERCQ, B., CHAGNEAU, A.M., COCHARD, T. and KHOURY, J. (1994) Comparative responses of genetically lean and fat chickens to lysine, arginine and non-essential amino acid supply. 1. Growth and body composition. British Poultry Science 35: 687-696.CrossRefGoogle ScholarPubMed
LEENSTRA, F.R. (1988) Selection for leanness: results of the Spelderholt experiment In: LECLERCQ, B. & WHITEHEAD, C.C. (Eds) Leanness in domestic birds: genetic, metabolic and hormonal aspects, pp. 59-69, Tiptree, Essex (UK): Butterworths & Co. (Publishers) Ltd.Google Scholar
LEMME, A., WIJTTEN, P.J., VAN WICHEN, J., PETRI, A. and LANGHOUT, D.J. (2006) Responses of male growing broilers to increasing levels of balanced protein offered as coarse mash or pellets of varying quality. Poultry Science 85: 721-730.CrossRefGoogle ScholarPubMed
LILBURN, M.S. and MYERS-MILLER, D.J. (1988) Development of lean and fat lines of chickens by sire family selection procedures. In: LECLERCQ, B. & WHITEHEAD, C.C. (Eds) Leanness in domestic birds: genetic, metabolic and hormonal aspects, pp. 87-93, Tiptree, Essex (UK): Butterworths & Co. (Publishers) Ltd.Google Scholar
MCNEILL, L., BERNARD, K. and MACLEOD, M.G. (2004) Food intake, growth rate, food conversion and food choice in broilers fed on diets high in rapeseed meal and pea meal, with observations on sensory evaluation of the resulting poultry meat. British Poultry Science 45: 519-523.CrossRefGoogle ScholarPubMed
MIGNON-GRASTEAU, S. and BEAUMONT, C. (2000) Growth curves in birds. Productions Animales 13: 337-348.CrossRefGoogle Scholar
MIGNON-GRASTEAU, S., MULEY, N., BASTIANELLI, D., GOMEZ, J., PÉRON, A., SELLIER, N., MILLET, N., BESNARD, J., HALLOUIS, J.M. and CARRÉ, B. (2004) Heritability of digestibilities and divergent selection for digestion ability in growing chicks fed a wheat diet. Poultry Science 83: 860-867.CrossRefGoogle ScholarPubMed
MONNET, L.E., BORDAS, A. and MÉRAT, P. (1979) The naked neck gene and growth performance in relation to ambient temperature in the chick. Annales de Génétique et de Sélection Animale 11: 397-412.CrossRefGoogle Scholar
N'DRI, A. L., MIGNON-GRASTEAU, S., SELLIER, N., TIXIER-BOICHARD, M. and BEAUMONT, C. (2006) Genetic relationships between feed conversion ratio, growth curve and body composition in slow-growing chickens. British Poultry Science 47: 273-280.CrossRefGoogle ScholarPubMed
NEWKIRK, R.W. and CLASSEN, H.L. (2002) The effects of toasting canola meal on body weight, feed conversion efficiency, and mortality in broiler chickens. Poultry Science 81: 815-825.CrossRefGoogle ScholarPubMed
NOBLET, J., DUBOIS, S., VAN MILGEN, J., WARPECHOWSKI, M., LE BELLEGO, L. and CARRÉ, B. (2007) Influence de la teneur en protéines de l'aliment sur l'utilisation métabolique de l'energie chez le poulet. 7èmes Journées de la Recherche Avicole, pp. 141-144, Paris (F): ITAVI.Google Scholar
O'SULLIVAN, N.P., DUNNINGTON, E.A., LARSEN, A.S. and SIEGEL, P.B. (1992) Correlated responses in lines of chickens divergently selected for fifty-six-day body weight. 2. Organ growth, deoxyribonucleic acid, ribonucleic acid, and protein content. Poultry Science 71: 598-609.CrossRefGoogle ScholarPubMed
PECH-WAFFENSCHMIDT, V., BOGIN, E., AVIDAR, Y. and HORST, P. (1995) Metabolic and biochemical changes during heat stress in relation to the feathering degree of the domestic hen. Avian Pathology 24: 33-44.CrossRefGoogle Scholar
PÉRON, A., BASTIANELLI, D., OURY, F.-X., GOMEZ, J. and CARRÉ, B. (2005) Effects of food deprivation and particle size of ground wheat on digestibility of food components in broilers fed a pelleted diet. British Poultry Science 46: 223-230.CrossRefGoogle ScholarPubMed
PÉRON, A., GOMEZ, J., MIGNON-GRASTEAU, S., SELLIER, N., BESNARD, J., DEROUET, M., JUIN, H. and CARRÉ, B. (2006) Effects of wheat quality on digestion differ between the D+ and D- chicken lines selected for divergent digestion capacity. Poultry Science 85: 462-469.CrossRefGoogle Scholar
PÉRON, A., SVIHUS, B., GABRIEL, I., BÉROT, S., TANGUY, D., BOUCHET, B., GOMEZ, J. and CARRÉ, B. (2007) Effects of two wheat cultivars on physico-chemical properties of wheat flours and digesta from two broiler chicken lines (D+ and D-) differing in digestion capacity. British Poultry Science 48: 370-380.CrossRefGoogle Scholar
PESTI, G.M., LECLERCQ, B., CHAGNEAU, A.M. and COCHARD, T. (1994) Comparative responses of genetically lean and fat chickens to lysine, arginine and non-essential amino acid supply. 2. Plasma amino acid responses. British Poultry Science 35: 697-707.CrossRefGoogle ScholarPubMed
PESTI, G.M., LECLERCQ, B., CHAGNEAU, A.M. and COCHARD, T. (1996) Effects of the naked neck (Na) gene on the sulfur-containing amino acid requirements of broilers. Poultry Science 75: 375-380.CrossRefGoogle ScholarPubMed
PYM, R.A.E. (1984) Genetic and physiological aspects of feed efficiency. Proceedings of the 17th World Poultry Congress, pp. 60-64, Hämeenlinna (Finland): WPSA.Google Scholar
PYM, R.A.E. (1990) Nutritional genetics. In: CRAWFORD, R.D. (Ed) Poultry Breeding and Genetics, pp. 847-876, Amsterdam (NL): Elsevier.Google Scholar
PYM, R.A.E. and FARRELL, D.J. (1977) A comparison of the energy and nitrogen metabolism of broilers selected for increased growth rate, food consumption and conversion of food to gain. British Poultry Science 18: 411-426.CrossRefGoogle ScholarPubMed
PYM, R.A.E. and SOLVYNS, A.J. (1979) Selection for food conversion in broilers: body composition of birds selected for increased body-weight gain, food consumption and food conversion ratio. British Poultry Science 20: 87-97.CrossRefGoogle Scholar
PYM, R.A.E., NICHOLLS, P.J., THOMSON, E., CHOICE, A. and FARRELL, D.J. (1984) Energy and nitrogen metabolism of broilers selected over ten generations for increased growth rate, food consumption and conversion of food to gain. British Poultry Science 25: 529-539.CrossRefGoogle ScholarPubMed
RICARD, F.H. (1975) Selection for the shape of the growth curve in the fowl. Experimental design and first general results. Annales de Génétique et de Sélection Animale 7: 427-443.CrossRefGoogle Scholar
RICHTER, G., LEMSER, A. and BARGHOLZ, J. (1996) Rapeseed and rapeseed meal as components in diets of laying hens. Archives of Animal Nutrition 49: 229-241.Google ScholarPubMed
ROSENBERG, D.W., WOODWARD, W.D. and KLINE, A.E. (1967) Effect of buquinolate on broiler chicks in floor pen trials. Poultry Science 46: 1113-1116.CrossRefGoogle Scholar
ROUGIÈRE, N., GOMEZ, J. and CARRÉ, B. (2007) Effects of diet particle size on digestive parameters in D+ and D- chicken lines selected for divergent digestion efficiency. Proceedings of the 16th European Symposium on Poultry Nutrition, pp. 75-78, Nouzilly (F): WPSA.Google Scholar
SARICICEK, B.Z. and SERDAR, S. (2006) Utilization of canola meal with or without phytase enzyme in broiler diets. Journal of Applied Animal Research 29: 69-72.CrossRefGoogle Scholar
SIEGEL, P.B., LARSEN, C.T., EMMERSON, D.A., GERAERT, P.A. and PICARD, M. (2000) Feeding regimen, dietary vitamin E, and genotype influences on immunological and production traits of broilers. Journal of Applied Poultry Research 9: 269-278.CrossRefGoogle Scholar
SØRENSEN, P., CHWALIBOG, A. and EGGUM, B.O. (1983) Protein and energy metabolism in two lines of chickens selected for growth on high or low protein diets. British Poultry Science 24: 237-250.CrossRefGoogle ScholarPubMed
SØRENSEN, P. (1985) Influence of diet on response to selection for growth and efficiency. In: HILL, W.G., MANSON, J.M. & HEWITT, D. (Eds) Poultry genetics and breeding. Proceedings of the 18th Poultry Science Symposium, pp. 85-95, Harlow, Roslin (UK): Longman group Ltd, British Poultry Science Ltd.Google Scholar
STERLING, K.G., PESTI, G.M. and BAKALLI, R.I. (2006) Performance of different broiler genotypes fed diets with varying levels of dietary crude protein and lysine. Poultry Science 85: 1045-1054.CrossRefGoogle ScholarPubMed
TOUCHBURN, S., SIMON, J. and LECLERCQ, B. (1981) Evidence of a glucose-insulin imbalance and effect of dietary protein and energy level in chickens selected for high abdominal fat content. Journal of Nutrition 111: 325-335.CrossRefGoogle ScholarPubMed
WASHBURN, K.W., GUILL, R.A. and EDWARDS, H.M. (1975) Influence of genetic differences in feed efficiency on carcass composition of young chickens. Journal of Nutrition 105: 1311-1317.CrossRefGoogle ScholarPubMed
WHITEHEAD, C.C. (1988) Selection for leanness in broilers using plasma lipoprotein concentration as selection criterion. In: LECLERCQ, B. & WHITEHEAD, C.C. (Eds) Leanness in domestic birds: genetic, metabolic and hormonal aspects, pp. 41-57, Tiptree, Essex (UK): Butterworths & Co. (Publishers) Ltd.Google Scholar
WHITEHEAD, C.C., HOOD, R.L., HEARD, G.S. and PYM, R.A.E. (1984) Comparison of plasma very low density lipoproteins and lipogenic enzymes as predictors of fat content and food conversion efficiency in selected lines of broiler chickens. British Poultry Science 25: 277-286.CrossRefGoogle ScholarPubMed
ZNANIECKA, G. (1969) Calorific value of protein and fat of the chicken's body. In: BLAXTER, K.L., KIELANOWSKI, J. & THORBEK, G. (Eds) Energy metabolism of farm animals. Proceedings of the 4th European Association for Animal Production Symposium, pp. 407-408, Newcastle upon Tyne (UK): Oriel Press Ltd.Google Scholar