Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T13:13:49.407Z Has data issue: false hasContentIssue false

Breeding for disease resistance in poultry: opportunities with challenges

Published online by Cambridge University Press:  18 November 2011

H. JIE
Affiliation:
Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Xinkang Road 46, Ya'an 625014, China
Y.P. LIU*
Affiliation:
Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Xinkang Road 46, Ya'an 625014, China
*
Corresponding author: [email protected]
Get access

Abstract

Avian disease, regarded as one of the crucial aspects influencing poultry production, has restricted the development of the poultry industry for a long period. Although traditional approaches, e.g. vaccination and bio-security measures, have played an indispensable role in diagnosing, treating and preventing diseases, poultry are still threatened by various diseases. Nowadays, with the development of molecular and quantitative genetics, some poultry diseases can be addressed by breeding for disease resistance. In this paper, the research progress of resistance breeding in poultry is reviewed, including genetics, methods, challenges and opportunities for the poultry industry.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AL MURRANI, W.K., AL RAWI, I.K. and RAOF, N.M. (2002) Genetic resistance to Salmonella typhimurium in two lines of chickens selected as resistant and sensitive on the basis of heterophil/lymphocyte ratio. British Poultry Science 43: 501-507.Google Scholar
BAYYARI, G.R., HUFF, W.E., RATH, N.C., BALOG, J.M., NEWBERRY, L.A., VILLINES, J.D., SKEELES, J.K., ANTHONY, N.B. and NESTOR, K.E. (1997) Effect of the genetic selection of turkeys for increased body weight and egg production on immune and physiological responses. Poultry Science 76: 289-296.CrossRefGoogle ScholarPubMed
BENFIELD, C.T.O., LYALL, J.W., KOCHS, G. and TILEY, L.S. (2008) Asparagine 631 variants of the chicken Mx protein do not inhibit influenza virus replication in primary chicken embryo fibroblasts or in vitro surrogate assays. Journal of Virology 82: 7533-7539.Google Scholar
BLOOM, S.E. and BACON, L.D. (1985) Linkage of the major histocompatibility (B) complex and the nucleolar organizer in the chicken. Journal of Heredity 76: 146-154.Google Scholar
BOSSELMAN, R.A., HSU, R.Y., BOGGS, T., HU, S., BRUSZEWSKI, J., OU, S., KOZAR, L., MARTIN, F., GREEN, C. and JACOBSEN, F. (1989) Germline transmission of exogenous genes in the chicken. Science 243: 533-535.Google Scholar
CALENGE, F., KAISER, P., VIGNAL, A. and BEAUMONT, C. (2010) Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review. Genetics Selection Evolution 42: 11.CrossRefGoogle ScholarPubMed
CAVERO, D., SCHMUTZ, M., PHILIPP, H.C. and PREISINGER, R. (2009) Breeding to reduce susceptibility to Escherichia coli. in layers. Poultry Science 88: 2063-2068.CrossRefGoogle ScholarPubMed
CHAPMAN, S.C., LAWSON, A., MACARTHUR, W.C., WIESE, R.J., LOECHEL, R.H., BURGOS TRINIDAD, M., WAKEFIELD, J.K., RAMABHADRAN, R., MAUCH, T.J. and SCHOENWOLF, G.C. (2005) Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development 132: 935-940.Google Scholar
CHO, H.J., ABD EI ATY, A.M., GOUDAH, A., SUNG, G.M., YI, H., SEO, D.C., KIM, J.S., SHIM, J.H., JEONG, J.Y., LEE, S.H. and SHIN, H.C. (2008) Monitoring of fluoroquinolone residual levels in chicken eggs by microbiological assay and confirmation by liquid chromatography. Biomedical Chromatography 22: 92-99.CrossRefGoogle ScholarPubMed
CLARK, J. and WHITELAW, B. (2003) A future for transgenic livestock. Nature Reviews Genetics 4: 825-833.CrossRefGoogle ScholarPubMed
DALGAARD, T., BOVING, M.K., HANDBERG, K., JENSEN, K.H., NORUP, L.R. and JUUL MADSEN, H.R. (2009) MHC expression on spleen lymphocyte subsets in genetically resistant and susceptible chickens infected with Marek's disease virus. Viral Immunology 22: 321-327.CrossRefGoogle ScholarPubMed
DENNIS, R., ZHANG, H.M. and CHENG, H.W. (2006) Effect of selection for resistance and susceptibility to viral diseases on concentrations of dopamine and immunological parameters in six-week-old chickens. Poultry Science 85: 2135-2140.CrossRefGoogle ScholarPubMed
ENSERINK, M. (2011) Transgenic chickens could thwart bird flu, curb pandemic risk. Science 331: 132-133.Google Scholar
EWALD, S.J., KAPCZYNSKI, D.R., LIVANT, E.J., SUAREZ, D.L., RALPH, J., MCLEOD, S. and MILLER, C. (2011) Association of Mx1 Asn631 variant alleles with reductions in morbidity, early mortality, viral shedding, and cytokine responses in chickens infected with a highly pathogenic avian influenza virus. Immunogenetics 63:363-375.Google Scholar
FDA, (2009) Regulation of genetically engineered animals containing heritable recombinant DNA constructs. http://www.fda.gov/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/default.htm.Google Scholar
FIFE, M.S., SALMON, N., HOCKING, P.M. and KAISER, P. (2009) Fine mapping of the chicken salmonellosis resistance locus (SAL1). Animal Genetics 40: 871-877.Google Scholar
FIFE, M.S., HOWELL, J.S., SALMON, N., HOCKING, P.M., VAN DIEMEN, P.M., JONES, M.A., STEVENS, M.P. and KAISER, P. (2010) Genome-wide SNP analysis identifies major QTL for Salmonella colonization in the chicken. Animal Genetics 42:134-140.CrossRefGoogle Scholar
FLOCK, D.K., LIU, X.F., CAO, L.H. and LU, X.Y. (1992) The distribution of modern breeding to egg production. Pigs and poultry 2: 58-61 (In Chinese).Google Scholar
GUILLEMOT, F., BILAULT, A., POURQUIÉ, O., BÉHAR, G., CHAUSSÉ, A.M., ZOOROB, R., KREIBICH, G. and AUFFRAY, C. (1988) A molecular map of the chicken major histocompatibility complex: The class beta Ⅱ genes are closely-linked to the class Ⅰ genes and the nucleolar organizer. The EMB0 Journal 7: 2775-2785.Google Scholar
HONG, Y.H., KIM, E.S., LILLEHOJ, H.S., LILLEHOJ, E.P. and SONG, K.D. (2009) Association of resistance to avian coccidiosis with single nucleotide polymorphisms in the zyxin gene. Poultry Science 88: 511-518.CrossRefGoogle ScholarPubMed
HU, J., BUMSTEAD, N., BURKE, D., PONCE DE LEÓN, F.A, SKAMENE, E., GROS, P. and MALO, D. (1995) Genetic and physical mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) in chicken. Mammalian Genome 6: 809-815.Google Scholar
HUO, J. (2010) The productive performance comparison among three different hybrids chicken. Pigs and Poultry 3: 66-68 (In Chinese).Google Scholar
ISAACS, A. and LINDENMAN, J. (1957) Virus interference. I. the interferon. Proceeding of the Royal Society B: Biological Sciences 147: 258-267.Google ScholarPubMed
ISLAM, M.N., RASHID, S.M.H., HOQUE, M.F., JULI, M.S.B. and KHATUN, M. (2008) Pathogenicity of IBDV related to outbreaks in the vaccinated flocks and the causes of vaccination failure. Journal of innovationand development strategy 2(3): 22-30Google Scholar
JIN, Y.C., WEI, P., WEI, X.X., ZHAO, Z.Y. and LI, Y. (2010) Marek's disease resistant/susceptible MHC haplotypes in Xiayan chickens identified on the basis of BLB2 PCR-RFLP and BLB2/BF2 sequence analyses. British Poultry Science 51: 530-539.Google Scholar
JOHANSSON, B.E. and EICHELBERGER, M.C. (2010) Influenza: a unique problem in vaccination. Future Virology 5: 651-664.Google Scholar
KA, S., KERJE, S., BORNOLD, L., LILJEGREN, U., SIEGEL, P.B., ANDERSSON, L. and HALLBÖÖK, F. (2009) Proviral integrations and expression of endogenous Avian leucosis virus during long term selection for high and low body weight in two chicken lines. Retrovirology 6: 68.CrossRefGoogle ScholarPubMed
KIM, D.K., LILLEHOJ, H.S., HONG, Y.H., PARK, D.W., LAMONT, S.J., HAN, J.Y. and LILLEHOJ, E.P. (2008) Immune-related gene expression in two B-complex disparate genetically inbred Fayoumi chicken lines following Eimeria maxima infection. Poultry Science 87: 433-443.CrossRefGoogle ScholarPubMed
KIM, D.K., KIM, C.H., LAMONT, S.J., JRKEELER, C.L. and LILLEHOJ, H.S. (2009) Gene expression profiles of two B-complex disparate, genetically inbred Fayoumi chicken lines that differ in susceptibility to Eimeria maxima. Poultry Science 88: 1565-1579.Google Scholar
LAMONT, S.J., BOLIN, C. and CHEVILLE, N. (1987) Genetic resistance to fowl cholera is linked to the major histocompatibility complex. Immunogenetics 25: 284-289.Google Scholar
LAMONT, S.J. (1998) The chicken major histocompatibility complex and diseases. Revue Scientifique Et Technique 17: 128-142.Google Scholar
LI, Z., NESTOR, K.E., SAIF, Y.M., ANDERSON, J.W. and PATTERSON, R.A. (2001) Effect of selection for increased body weight in turkeys on lymphoid organ weights, phagocytosis, and antibody responses to fowl cholera and Newcastle disease-inactivated vaccines. Poultry Science 80: 689-694.Google Scholar
LIAN, L., QU, L.J., ZHENG, J.X., LIU, C.J., ZHANG, Y.P., CHEN, Y.M., XU, G.Y. and YANG, N. (2010) Expression profiles of genes within a subregion of chicken major histocompatibility complex B in spleen after Marek's disease virus infection. Poultry Science 89: 2123-2129.Google Scholar
LOIS, C., HONG, E.J., PEASE, S., BROWN, E.J. and BALTIMORE, D. (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295: 868-872.CrossRefGoogle ScholarPubMed
LYALL, J., IRVINE, R.M., SHERMAN, A., MCKINLEY, T.J., NÚÑEZ, A., PURDIE, A., OUTTRIM, L., BROWN, I.H., ROLLESTON SMITH, G., SANG, H. and TILEY, L. (2011) Suppression of Avian Influenza transmission in genetically modified chickens. Science 331: 223-226.CrossRefGoogle ScholarPubMed
MA, H., NING, Z.H., LU, Y., HAN, H.B., WANG, S.H., MU, J.F., LI, J.Y., LIAN, Z.X. and LI, N. (2010) Monocytes-macrophages phagocytosis as a potential marker for disease resistance in generation 1 of dwarf chickens. Poultry Science 89: 2022-2029.CrossRefGoogle ScholarPubMed
MCGREW, M.J., SHERMAN, A., ELLARD, F.M., LILLICO, S.G., GILHOOLEY, H.J., KINGSMAN, A.J., MITROPHANOUS, K.A. and SANG, H. (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Reports 5: 728-733.Google Scholar
MENG, S.S., YANG, L.M., XU, C.F., QIN, Z.M., XU, H.Y., WANG, Y.L., SUN, L. and LIU, W.J. (2011) Recombinant chicken interferon-α inhibits H9N2 Avian Influenza Virus replication in vivo by oral administration. Journal of Interferon & Cytokine Research. DOI: 10. 1089/jir. 2010. 0123.Google Scholar
NIKOLAIDOU, K.I., SAMANIDOU, V.F. and PAPADOYANNIS, I.N. (2008) Development and validation of an HPLC method for the determination of seven tetracycline antibiotics residues in chicken muscle and egg yolk according to 2002/657/EC. Journal of Liquid Chromatography & Related Technologies 31: 2141-2158.CrossRefGoogle Scholar
NOURI, M., RAHBARIZADEH, F., AHMADVAND, D., MOOSAKHANI, F., SADEQZADEH, E., LAVASANI, S. and VISHTEH, V.K. (2010) Inhibitory effects of Lactobacillus salivarius and Lactobacillus crispatus isolated from chicken gastrointestinal tract on Salmonella enteritidis and Escherichia coli. growth. Iranian Journal of Biotechnology 8: 32-37.Google Scholar
O'NEILL, A.M., LICANT, E.J.A. and EWALD, S.J. (2010) Interferon alpha-induced inhibition of infectious bursal disease virus in chicken embryo fibroblast cultures differing in Mx genotype. Avian Diseases 54: 802-806.Google ScholarPubMed
PAVLIDIS, H.O., BALOG, J.M., STAMPS, L.K., JRHUGHES, J.D., HUFF, W.E. and ANTHONY, N.B. (2007) Divergent selection for ascites incidence in chickens. Poultry Science 86: 2517-2529.CrossRefGoogle ScholarPubMed
PINARD-VAN DER LAAN, M.H., MONVOISIN, J.L., PERY, P., HAMET, N. and THOMAS, M. (1998) Comparison of outbred lines of chickens for resistance to experimental infection with coccidiosis (Eimeria tenella). Poultry Science 77: 185-191.CrossRefGoogle ScholarPubMed
PREISINGER, R. (2010) Genome-wide selection in poultry. Lohmann Information 45: 18-21.Google Scholar
QIN, L.T., GAO, Y.L., PAN, W., DENG, X.Y., SUN, F.F., LI, K., QI, X.L., GAO, H.L., LIU, C.N. and WANG, X.M. (2010) Investigation of co-infection of ALV-J with REV, MDV, CAV in layer chicken flocks in some regions of China. Chinese Journal of Preventive Veterinary Medicine 32: 90-93 (In Chinese).Google Scholar
ROBERTS, E. and CARD, L.E. (1935) Inheritance of resistance to bacterial infection in animals: a genetic study of pullorum disease, in: ROBERTS, E. & CARD, L.E. (Eds) Inheritance of resistance to bacterial infection in animals: a genetic study of pullorum disease, Bulletin 419, pp. 467-491 (Urbana, Illinois University).Google Scholar
SALTER, D.W. and CRITTENDEN, L.B. (1989) Artificial insertion of a dominant gene for resistance to Avian Leukosis Virus into the germ line of the chicken. Theoretical and Applied Genetics 77: 457-461.Google Scholar
SCHOU, T.W., LABOURIAU, R., PERMIN, A., CHRISTENSEN, J.P., SØRENSEN, P., CU, H.P., NGUYEN, V.K. and JUUL MADSEN, H.R. (2010) MHC haplotype and susceptibility to experimental infections (Salmonella Enteritidis, Pasteurella multocida or Ascaridia galli) in a commercial and an indigenous chicken breed. Veterinary Immunology and Immunopathology 135: 52-63.CrossRefGoogle Scholar
SCOTT, B.B. and LOIS, C. (2005) Generation of tissue-specific transgenic birds with lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America 102: 16443-16447.CrossRefGoogle ScholarPubMed
SHIM, E. and GALVANI, A.P. (2009) Evolutionary repercussions of avian culling on host resistance and influenza virulence. PLoS One 4: e5503.CrossRefGoogle ScholarPubMed
SNOWDER, G. (2006) Genetic selection for disease resistance: challenges and opportunities. Proceedings of the beef improvement federation 38th annual research symposium and annual meeting, Mississippi, pp. 52-60.Google Scholar
SONG, L., ZHAO, D.G., , , WU, Y.J. and LI, Y. (2008) Transient expression of chicken alpha interferon gene in lettuce. Journal of Zhejiang University Science B 9: 351-355.Google Scholar
SWAGGERTY, C.L., PEVZNER, I.Y., HE, H.Q. GENOVESE, K.J., , NISBET, D.J., KAISER, P. and KOGUT, M.H. (2009) Selection of broilers with improved innate immune responsiveness to reduce on-farm infection by foodborne pathogens. Foodborne Pathogens and Disease 6: 777-783.Google Scholar
JrTAYLOR, R.L. (2004) Major histocompatibility (B) complex control of responses against Rous sarcomas. Poultry Science 83: 638-649.Google Scholar
TOHIDI, R., IDRIS, I., PANANDAM, J.M. and HAIR BEJO, M. (2011) Analysis of genetic variation of inducible nitric oxide synthase and natural resistance-associated macrophage protein 1 loci in Malaysian native chickens. African Journal of Biotechnology 10: 1285-1289.Google Scholar
VAN DE WIEL, M.A. and KIM, K.I. (2007) Estimating the false discovery rate using nonparametric deconvoltion. Biometrics 63: 806-815.Google Scholar
VAN DER MOST, P.J., DE JONG, B., PARMENTIER, H.K. and VERHULST, S. (2011) Trade-off between growth and immune function: a meta-analysis of selection experiments. Functional Ecology 25: 74-80.Google Scholar
VAN DER ZIJPP, A.J. (1983) Breeding for immune responsiveness and disease resistance. World's Poultry Science Journal 39: 118-131.Google Scholar
VASS, M., HRUSKA, K. and FRANEK, M. (2008) Nitrofuran antibiotics: a review on the application, prohibition and residual analysis. Veterinarni Medicina 53: 469-500.Google Scholar
WANG Z.F., and CUI, Z.Z. (2006) Evolution of gp85 gene of subgroup J Avian Leukosis Virus under the selective pressure of antibodies. Science in China Series C: Life Sciences 49: 227-234.Google Scholar
WANG, Y.F., SUN, Y.K., TIAN, Z.C., SHI, X.M., TONG, G.Z., LIU, S.W., ZHI, H.D., KONG, X.G. and WANG, M. (2009) Protection of chickens against infectious bronchitis by a recombinant fowlpox virus co-expressing IBV-S1 and chicken IFN-γ. Vaccine 27: 7046-7052.Google Scholar
WEI, X.T., LI, Y., LIU, Y.Z. and ZHANG, J.F. (2009) Secretory expression of the chicken γ interferon gene in yeast Pichia pastoris. Acta Agriculturae Zhejiangensis 21: 450-454 (In Chinese).Google Scholar
WISE, T.G., SCHAFER, D.S., LOWENTHAL, J.W. and DORAN, T.J. (2008) The use of RNAi and transgenics to develop viral disease resistant livestock, in: PINARD, M.H., GAY, C., PASTORET, P.P. & DODET, B. (Eds) Animal Genomics for Animal Health, Vol. 132, pp. 377-382 (France, Karger).Google Scholar
YANG, Q., CUI, J., CHAZARO, I., CUPPLES, L.A. and DEMISSIE, S. (2005) Power and type I error rate of false discovery rate approaches in genome-wide association studies. BMC Genetics 6: S134.Google Scholar
YIN, C.G., ZHANG, C.S., ZHANG, A.M., QIN, H.W., WANG, X.Q., DU, L.X. and ZHAO, G.P. (2010) Expression analyses and antiviral properties of the Beijing-You and White Leghorn myxovirus resistance gene with different amino acids at position 631. Poultry Science 89: 2259-2264.CrossRefGoogle ScholarPubMed
YOO, B.H. and SHELDON, B.L. (1992) Association of the major histocompatibility complex with Avian Leukosis Virus infection in chickens. British Poultry Science 33: 613-620.Google Scholar
YU, Y., ZHANG, H., TIAN, F., BACON, L.D., ZHANG, Y., ZHANG, W.S. and SONG, J.Z. (2008) Quantitative evaluation of DNA methylation patterns for ALVEs and TVB genes in a neoplastic disease susceptible and resistant chicken model. PLoS One 3: e1731.Google Scholar
ZEKARIAS, B., TER HUURNE, A.A.H.M., LANDMAN, W.J.M., REBEL, J.M.J., POL, J.M.A. and GRUYS, E. (2002) Immunological basis of difference in disease resistance in the chicken. Veterinary Research 33: 109-125.Google Scholar