Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T03:41:19.989Z Has data issue: false hasContentIssue false

Avian metapneumovirus infection in poultry

Published online by Cambridge University Press:  24 November 2016

S. UMAR
Affiliation:
Department of Pathology, PMAS Arid Agriculture University Rawalpindi, Pakistan
H. SABIR
Affiliation:
Department of Pathology, PMAS Arid Agriculture University Rawalpindi, Pakistan
A. AHMED
Affiliation:
Agri Services Officer Uch Sharif, Engro Foods Limited, Pakistan
S. SUBHAN*
Affiliation:
Department of Microbiology, University of Veterinary & Animal Sciences, Lahore, Pakistan
*
Corresponding author: [email protected]
Get access

Abstract

Avian metapneumovirus (aMPV) infections are an economical issue for the poultry industry worldwide, and have been associated with upper respiratory tract infections and reductions in egg production in various avian species. The aMPV causes turkey rhinotracheitis (TRT) and is associated with swollen head syndrome (SHS) in chickens, which is usually accompanied by secondary infections that increase mortality. It was first reported in 1978 in South Africa and since then, has been seen in most regions of the world. It has been classified into four subgroups called: A, B, C and D. TRT and SHS are characterised by tracheal rales, sneezing, swollen sinuses, swollen head, and nasal and ocular discharge. The aMPV can lead to a drop in egg production and/or an increase in egg abnormalities in both turkeys and hens. Chickens may have antibodies without exhibiting clinical signs. Transmission requires direct contact among birds and its spread over long distances is uncertain, but wild birds are postulated as probable links. The aMPV infections can be diagnosed by serology (ELISA) and molecular methods (PCR). Good biosecurity and immune interventions are effective and necessary aspects of the control program. Live vaccines predominantly control aMPV infection in poultry flocks, but vaccine virus can be found for extended periods after application that may lead to reversion.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ARIAS, N., MACHUCA, M. and PETRUCCELLI, M.Á. (2015) Metapneumovirus aviar: revisión sobre aspectos etiológicos, clínicos, anatomopatológicosy epidemiológicos’. Analecta Veterinaria 35 (2): http://hdl.handle.net/10915/50772.Google Scholar
AUNG, Y.H., LIMAN, M., NEUMANN, U. and RAUTENSCHLEIN, S. (2008) Reproducibility of swollen sinuses in broilers by experimental infection with avian metapneumovirus subtypes A and B of turkey origin and their comparative pathogenesis. Avian Pathology 37 (1): 65-74.CrossRefGoogle Scholar
BENNETT, R.S., LARUE, R., SHAW, D., YU, Q., NAGARAJA, K. V., HALVORSON, D.A. and NJENGA, M.K. (2005) A wild goose Metapneumovirus containing a large attachment glycoprotein Is avirulent but immunoprotective in domestic Turkeys. Journal of Virology 79 (23): 14834-14842.CrossRefGoogle ScholarPubMed
BUYS, S.B. and DU PEREZ, J.H. (1980) A preliminary report of a virus causingrhinotracheitis in turkeys in South Africa and attempts to attenuate the virus. Turkeys 28 (36): 46.Google Scholar
CATELLI, E., CECCHINATO, M., LUPINI, C., SPERATI, L., PESENTE, P., PICCIRILLO, A., FRANCIOSI, C. and NAYLOR, C.J. (2006) Molecular epidemiology avian pneumovirus strains in Italy. World's Poultry Science Journal 62: 135-136.Google Scholar
CATELLI, E., LUPINI, C., CECCHINATO, M., RICCHIZZI, E., BROWN, P. and NAYLOR, C.J. (2010) Field avian metapneumovirus evolution avoiding vaccine induced immunity. Vaccine 28 (4): 916-921.CrossRefGoogle ScholarPubMed
CAVANAGH, D. and BARRETT, T. (1988) Pneumovirus-like characteristics of the mRNA and proteins of turkey rhinotracheitis virus. Virus Research 11 (3): 241-256.CrossRefGoogle ScholarPubMed
CECCHINATO, M., CATELLI, E., LUPINI, C., RICCHIZZI, E., CLUBBE, J., BATTILANI, M. and NAYLOR, C.J. (2010) Avian metapneumovirus (aMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction. Veterinary Microbiology 146 (1-2): 24-34.CrossRefGoogle ScholarPubMed
CECCHINATO, M., CATELLI, E., LUPINI, C., RICCHIZZI, E., PROSPERI, S. and NAYLOR, C.J. (2014) Reversion to virulence of a subtype B avian metapneumovirus vaccine: is it time for regulators to require availability of vaccine progenitors? Vaccine 32 (36): 4660-4664.CrossRefGoogle ScholarPubMed
CECCHINATO, M., LUPINI, C., MUNOZ POGORELTSEVA, O.S., LISTORTI, V., MONDIN, A., DRIGO, M. and CATELLI, E. (2013) Development of a real-time RT-PCR assay for the simultaneous identification, quantitation and differentiation of avian metapneumovirus subtypes A and B. Avian Pathology 42 (3): 283-289.CrossRefGoogle ScholarPubMed
CHA, R.M., YU, Q. and ZSAK, L. (2013) The pathogenicity of avian metapneumovirus subtype C wild bird isolates in domestic turkeys. Virology Journal 10 (1): 38.CrossRefGoogle ScholarPubMed
COOK, J.K.A. (2000) Avian pneumovirus infections of turkeys and chickens. Veterinary Journal 160 (2): 118-125.CrossRefGoogle ScholarPubMed
COOK, J.K.A. (2009) Avian metapnuemovirus - nearly 30 years of vaccination. Proceedings of the International Symposium on Infectious Bronchitis and Pneumovirus Infections in Poultry. Rauischholzhausen, Germany, pp. 326-333.Google Scholar
COOK, J.K.A. and CAVANAGH, D. (2002) Detection and differentiation of avian pneumoviruses (metapneumoviruses). Avian Pathology 2: 117-132.CrossRefGoogle Scholar
COOK, J.K.A., HUGGINS, M.B., ORBELL, S.J. and SENNE, D.A. (1999) Preliminary antigenic characterization of an avian pneumovirus isolated from commercial turkeys in Colorado, USA. Avian Pathology 28 (6): 607-617.CrossRefGoogle ScholarPubMed
FELIPPE, P.A., DA SILVA, L.H.A., SANTOS, M.B.D., SAKATA, S.T. and ARNS, C.W. (2011) Detection of and phylogenetic studies with avian metapneumovirus recovered from feral pigeons and wild birds in Brazil. Avian Pathology 40 (5): 445-452.CrossRefGoogle ScholarPubMed
GANAPATHY, K., BUFTON, A., PEARSON, A., LEMIERE, S. and JONES, R.C. (2010) Vaccination of commercial broiler chicks against avian metapneumovirus infection: a comparison of drinking-water, spray and oculo-oral delivery methods. Vaccine 28 (23): 3944-3948.CrossRefGoogle ScholarPubMed
GANAPATHY, K. and JONES, R.C. (2007) Vaccination of chicks with live attenuated subtype B avian metapneumovirus vaccines: protection against challenge and immune responses can be unrelated to vaccine dose. Avian Diseases 51 (3): 733-737.CrossRefGoogle ScholarPubMed
GIOVANARDI, D., LUPINI, C., PESENTE, P., ROSSI, G., ORTALI, G. and CATELLI, E. (2014) Longitudinal field studies of avian Metapneumovirus and Turkey hemorrhagic enteritis virus in turkeys suffering from colibacillosis associated mortality. Veterinary Research Communications 38 (2): 129-137.CrossRefGoogle ScholarPubMed
GIRAUD, P., BENNEJEAN, G., GUITTET, M. and TOQUIN, D. (1986) Turkey rhinotracheitis in France: preliminary investigations on a ciliostatic virus. The Veterinary Record 119 (24): 606-607.Google ScholarPubMed
GOUGH, R.E. and JONES, R.C. (2008) Avian Metapneumovirus, in: SAIF, Y.M. (Ed.) Diseases of poultry, 12th ed., pp. 100-110 (Ames: Blackwell Publishing).Google Scholar
HESS, M., HUGGINS, M.B. and HEINCZ, U. (2004) Hatchability, serology and virus excretion following in ovo vaccination of chickens with an avian metapneumovirus vaccine. Avian Pathology 33 (6): 576-580.CrossRefGoogle ScholarPubMed
HOMAYOUNFAR, N., SHOUSHTARI, H., CHARKHKAR, S. and BOZORGMEHRIFARD, M. (2015) Detection by reverse transcriptase-polymerase chain reaction and molecular characterization of avian metapneumovirus in chicken flocks in Iran. WALIA Journal 31 (S3): 170-174.Google Scholar
JIRJIS, F.F., NOLL, S.L., HALVORSON, D.A., NAGARAJA, K.V. and SHAW, D.P. (2002) Pathogenesis of avian Pneumovirus infection in Turkeys. Veterinary Pathology 39 (3): 300-310.CrossRefGoogle ScholarPubMed
JONES, R.C. (2001) Pneumovirinae, in: JORDAN, F., PATTISON, M.D., ALEXANDER, D. & FARAGHER, T. (Eds) Poultry Diseases, pp. 272-280 (W.B. Saunders Publishers).Google Scholar
LAMB, R.A., COLLINS, P.L., KOLAKOFSKY, D., MELERO, J.A., NAGAI, Y., OLDSTORE, M.B., PRINGLE, A.C.R. and RIMA, B.K. (2000) Family paramyxoviridae, in: VAN REGENMORTEL, M.H.V. (Ed.) Virus taxonomy: classification and nomenclature of viruses, seventh report of the International Committee on Taxonomy of Viruses, pp. 549-561 (San Diego: Academic Press).Google Scholar
LIMAN, M. and RAUTENSCHLEIN, S. (2007) Induction of local and systemic immune reactions following infection of turkeys with avian Metapneumovirus (aMPV) subtypes A and B. Veterinary Immunology and Immunopathology 115 (3-4): 273-285.CrossRefGoogle ScholarPubMed
LISTORTI, V., LUPINI, C., CECCHINATO, M., PESENTE, P., ROSSI, G., GIOVANARDI, D., NAYLOR, C.J. and CATELLI, E. (2014) Rapid detection of subtype B avian metapneumoviruses using RT-PCR restriction endonuclease digestion indicates field circulation of vaccine-derived viruses in older turkeys. Avian Pathology 43 (1): 51-56.CrossRefGoogle ScholarPubMed
MAJÓ, N., MARTÍ, M., O'LOAN, C.J., ALLAN, G.M., PAGÈS, A. and RAMIS, A. (1996) Ultrastructural study of turkey rhinotracheitis virus infection in turbinates of experimentally infected chickens. Veterinary Microbiology 52 (1-2): 37-48.CrossRefGoogle ScholarPubMed
MARIEN, M., DECOSTERE, A., MARTEL, A., CHIERS, K., FROYMAN, R. and NAUWYNCK, H. (2005) Synergy between avian pneumovirus and Ornithobacterium rhinotracheale in turkeys. Avian Pathology 34 (3): 204-211.CrossRefGoogle ScholarPubMed
McDOUGALL, J.S. and COOK, J.K. (1986) Turkey rhinotracheitis: preliminary investigations. The Veterinary Record 118 (8): 206-207.CrossRefGoogle ScholarPubMed
MORLEY, A.J. and THOMSON, D.K. (1984) Swollen-head syndrome in broiler chickens. Avian Diseases 28 (1): 238-243.CrossRefGoogle ScholarPubMed
RIVERA-BENITEZ, J.F., MARTÍNEZ-BAUTISTA, R., RÍOS-CAMBRE, F. and RAMÍREZ-MENDOZA, H. (2014) Molecular detection and isolation of avian metapneumovirus in Mexico. Avian Pathology 43 (3): 217-223.CrossRefGoogle ScholarPubMed
RUBBENSTROTH, D. and RAUTENSCHLEIN, S. (2010) Compromised T-cell immunity in turkeys may lead to an unpredictable avian metapneumovirus vaccine response and variable protection against challenge. Avian Pathology 39 (5): 349-357.CrossRefGoogle Scholar
SEIFI, S. and BOROOMAND, Z. (2015) The role of avian Metapenumovirus in respiratory complex disease circulating in broilers In Northern Iran. Trakia Journal of Science 13 (2): 175-179.CrossRefGoogle Scholar
SHIN, H.-J., NAGARAJA, K.V., MCCOMB, B., HALVORSON, D. A., JIRJIS, F.F., SHAW, D.P., SEAL, B.S. and NJENGA, M.K. (2002) Isolation of avian pneumovirus from mallard ducks that is genetically similar to viruses isolated from neighboring commercial turkeys. Virus Research 83 (1-2): 207-212.CrossRefGoogle ScholarPubMed
SMIALEK, M., PESTKA, D., TYKALOWSKI, B., STENZEL, T. and KONCICKI, A. (2015) Development of vaccine-induced immunity against TRT in turkeys depends remarkably on the level of maternal antibodies and the age of birds on the day of vaccination. BMC Veterinary Research 11: 28.CrossRefGoogle ScholarPubMed
SMIALEK, M., TYKAŁOWSKI, B., STENZEL, T. and KONCICKI, A. (2012) The perspective of immunoprophylaxis and selected immunological issues in the course of the turkey rhinotracheitis. Polish Journal of Veterinary Sciences 15 (1): 175-180.CrossRefGoogle ScholarPubMed
SUN, J., WEI, Y., RAUF, A., ZHANG, Y., MA, Y., ZHANG, X., SHILO, K., YU, Q., SAIF, Y.M., LU, X., YU, L. and LI, J. (2014) Methyltransferase-defective avian Metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado Strain and the heterologous Minnesota Strain. Journal of Virology 88 (21): 12348-12363.CrossRefGoogle ScholarPubMed
TOWNSEND, E., HALVORSON, D.A., NAGARAJA, K.V. and SHAW, D.P. (2000) Susceptibility of an avian pneumovirus isolated from Minnesota turkeys to physical and chemical agents. Avian Diseases 44 (2): 336-342.CrossRefGoogle ScholarPubMed
UMAR, S., ARIF, M., SHAH, M.A.A., MUNIR, M.T., AHMED, S. and KHAN, M.I. (2015) Application of Avian cytokines as immuno-modulating agents: a review. World's Poultry Science Journal 71: 643-653 CrossRefGoogle Scholar
UMAR, S., SHAH, M.A.A. and MUNIR, M.T. (2016a) Infectious bronchitis virus: Evolution and vaccination. World's Poultry Science Journal 72: 49-60.CrossRefGoogle Scholar
UMAR, S., SHAH, M.A.A., SUBHAN, S., TARIQ, A. and MUNIR, M.T. (2016b) Mycoplasmosis in poultry: update on diagnosis and preventive measures. World's Poultry Science Journal (in press).CrossRefGoogle Scholar
VAN LOOCK, M., LOOTS, K., VAN DE ZANDE, S., VAN HEERDEN, M., NAUWYNCK, H., GODDEERIS, B.M. and VANROMPAY, D. (2006) Pathogenic interactions between Chlamydophila psittaci and avian pneumovirus infections in turkeys. Veterinary Microbiology 112 (1): 53-63.CrossRefGoogle Scholar
VELAYUDHAN, B.T., NAGARAJA, K.V., THACHIL, A.J., SHAW, D.P., GRAY, G.C. and HALVORSON, D.A. (2006) Human Metapneumovirus in Turkey poults. Emerging Infectious Diseases12 (12): 1853-1859.CrossRefGoogle ScholarPubMed
VILLARREAL, L.Y.B., BRANDÃO, P.E., CHACÓN, J.L., ASSAYAG, M.S., MAIORKA, P.C., RAFFI, P., SAIDENBERG, A.B.S., JONES, R.C. and FERREIRA, A.J.P. (2007) Orchitis in roosters with reduced fertility associated with avian infectious bronchitis virus and avian metapneumovirus infections. Avian Diseases 51 (4): 900-904.CrossRefGoogle ScholarPubMed