Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T08:12:40.230Z Has data issue: false hasContentIssue false

Mechanisms of aggression and production in chickens: genetic variations in the functions of serotonin, catecholamine, and corticosterone

Published online by Cambridge University Press:  25 June 2007

H.W. CHENG*
Affiliation:
Livestock Behaviour Research Unit, USDA-ARS, W. Lafayette, IN 47907
W.M. MUIR
Affiliation:
Animal Sciences Department, Purdue University, W. Lafayette, IN 47907, USA
*
*Corresponding author: [email protected]
Get access

Abstract

The neuroendocrine systems, such as dopamine (DA) and serotonin (5-HT) as well as corticosterone (CORT), are involved in regulating behavioural patterns and reproduction in humans and other mammals. Similar functions of neuroendocrine system may present in laying hens. To test the hypothesis, two divergent chicken lines were used in the study. Each line has distinct levels of aggressiveness and productivity at a group setting and exhibits differen susceptibility to various environmental stressors. We found that, at 21 wks of age, LGPS (Low Group Productivity and Survivability) birds had significantly higher blood concentrations of DA and epinephrine than the KGB birds (Kind Gentle Birds, also previously termed HGPS, birds with a High Group Productivity and Survivability) (P<0.01, respectively). The blood concentration of norepinephrine was not significantly different between the lines but the ratio of epinephrine to norepinephrine was higher in LGPS birds (P<0.01). The blood concentration of 5-HT was also significantly higher in LGPS birds compared to KGB birds (P<0.01). In contrast, KGB birds tended to have a higher level of blood CORT (P=0.1). The results suggest that genetic selection for productivity and survivability with domestic behaviours alters the birds' neuroendocrine homeostasis. The selection-associated plasticity of the neuroendocrine system in controlling animal aggression and productivity were discussed in the article.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

APPLEBY, M.C. and HOGARTH, G.S. (1991) Welfare of laying hens in cages and alternative systems: environmental, physical and behavioural aspects. World's Poultry Science Journal 47: 109128.CrossRefGoogle Scholar
ABUMARIA, N., RYGULA, R., HAVEMANN-REINECKE, U., RUTHER, E., BODEMER, W., ROOS, C. and FLUGGE, G. (2006) Identification of genes regulated by chronic social stress in the rat dorsal raphe nucleus. Cellular and Molecular Neurobiology 26: 145162.CrossRefGoogle ScholarPubMed
ANDERSON, G.M., FEIBEL, F.C. and COHEN, D.J. (1987) Determination of serotonin in whole blood, platelet-rich plasma, platelet-poor plasma and plasma ultrafiltrate. Life Science 40: 10631070.CrossRefGoogle ScholarPubMed
ANDERSSON, K., FUXE, K., ENEROTH, P.HARFSTRAND, A and AGNATI, L.F. (1988) Involvement of D1 dopamine receptors in the nicotine-induced neuro-endocrine effects and depletion of diencephalic catecholamine stores in the male rat. Neuroendocrinology 48: 188200.CrossRefGoogle ScholarPubMed
BARRACLOUGH, C.A. (1992) Neural control of the synthesis and release of luteinizing hormone-releasing hormone. Ciba Foundation symposium 168: 233246.Google ScholarPubMed
BACON, L.D. (1987) Influence of the major histocompatibility complex on disease resistance and productivity. Poultry Science 66: 802811.CrossRefGoogle ScholarPubMed
BALABAN, E., ALPER, J.S. and KASAMON, Y.L. (1996) Mean genes and the biology of aggression: a critical review of recent animal and human research. Journal of Neurogenetics 11: 143.CrossRefGoogle ScholarPubMed
BARAKK, Y. and NASHIACH, M. (2004) Aggression–from basic science to real life. Israel Medical Association Journal 5: 667668.Google Scholar
BARRACLOUGH, C.A. (1992) Neural control of the synthesis and release of luteinizing hormone-releasing hormone. Ciba Foundation Symposia 168: 233246.Google ScholarPubMed
BAROFSKY, A.L., TAYLOR, J., TIZABI, Y., KUMAR, R. and JONES-QUARTEY, K. (1983) Specific neurotoxin lesions of median raphe serotonergic neurons disrupt maternal behaviour in the lactating rat. Endocrinology 113: 18841893.CrossRefGoogle ScholarPubMed
BAYYARI, G.R., HUFF, W.E., RATH, N.C., BALOG, J.M., NEWBERRY, L.A., VILLINES, J.D., SKEELES, J.K., ANTHONY, N.B. and NESTOR, K.E. (1997) Effect of the genetic selection of turkeys for increased body weight and egg production on immune and physiological responses. Poultry Science 76: 289296.CrossRefGoogle ScholarPubMed
BECU-VILLALOBOS, D. and LIBERTUN, C. (1995) Development of gonadotropin-releasing hormone (GnRH) neuron regulation in the female rat. Cellular and Molecular Neurobiology 15: 165176.CrossRefGoogle ScholarPubMed
BELL, R. and HEPPER, P.G. (1987) Catecholamines and aggression in animals. Behavioural Brain Research 23: 121.CrossRefGoogle ScholarPubMed
BELL, R. and HOBSON, H. (1994) 5-HT1A receptor influences on rodent social and agonistic behaviour: a review and empirical study. Neuroscience and Biobehavioural Reviews. 18: 325338.CrossRefGoogle ScholarPubMed
BENUS, R.F., BOHUS, B., KOOLHAAS, J.M. and VAN OORTMERSSEN, G.A. (1991a) Behavioural differences between artificially selected aggressive and non-aggressive mice: response to apomorphine. Behavioural Brain Research 43: 203208.CrossRefGoogle ScholarPubMed
BENUS, R.F., BOHUS, B., KOOLHAAS, J.M. and VAN OORTMERSSEN, G.A. (1991b) Heritable variation for aggression as a reflection of individual coping strategies. Experientia 47: 10081019.CrossRefGoogle ScholarPubMed
BERGQUIST, J., TARKOWSKI, A., EWING, A. and EKMAN, R. (1998) Catecholaminergic suppression of immunocompetent cells. Immunology Today 19: 562567.CrossRefGoogle ScholarPubMed
BERMAN, M.E. and COCCARO, E.F. (1998) Neurobiologic correlates of violence: relevance to criminal responsibility. Behavioural Sciences and the Law 16: 303318.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
BILZARD, D.A., FREEDMAN, L.S. and LIANG, B. (1983) Genetic variation, chronic stress, and the central and peripheral noradrenergic system. American Journal of Physiology R 600605.Google Scholar
BLANCHARD, D.C., SAKAI, R.R., MCEWEN, B., WEISS, S.M. and BLANCHARD, J.R. (1993) Subordination stress: behavioural, brain, and neuroendocrine correlates. Behavioural Brain Research 58: 113121.CrossRefGoogle ScholarPubMed
BLUM, K. and SHERIDAN, P.J. (1995) Dopamine D2 receptor gene variants-association and linkage studies in impulsive-addictive-compulsive behaviour. Pharmacogenetics 5: 121141.CrossRefGoogle ScholarPubMed
BLUM, K., WOOD, R.C., BRAVERMAN, E.R., CHEN, T.J. and SHERIDAN, P.J. (1995) The D2 dopamine receptor gene as a predictor of compulsive disease: Bayes' theorem. Functional Neurology 10: 3744.Google ScholarPubMed
BONSON, K.R., JOHNSON, R.G., FIORELLA, D., RABIN, R.A. and WINTER, J.C. (1994) Serotonergic control of androgen-induced dominance. Pharmacology Biochemistry Behaviour 49: 313322.CrossRefGoogle ScholarPubMed
BRILEY, M.S., LANGER, S.Z., RAISMAN, R., SECHTER, D. and ZARIFIAN, E. (1980) Tritiated imipramine binding sites are decreased in platelets of untreated depressed patients. Science 209: 303305.CrossRefGoogle ScholarPubMed
BROWN, K.I. (1959) ‘Stress’ and its implication in poultry production. World's Poultry Science Journal 15: 255263.CrossRefGoogle Scholar
BROWN, K.I. and NESTOR, K.E. (1973) Some physiological responses of turkeys selected for high and low adrenal response to cold stress. Poultry Science 52: 1948–54.CrossRefGoogle ScholarPubMed
BROWN, K.I. and NESTOR, K.E. (1974) Implications of selection for high and low adrenal response to stress. Poultry Science 53: 12971306.CrossRefGoogle ScholarPubMed
BRUSH, F.R., ISAACSON, M.D., PELLEGRINO, L.J., RYKASZEWSKI, I.M. and SHAIN, C.N. (1991) Characteristics of the pituitary-adrenal system in the Syracuse high- and low-avoidance strains of rats (Rattus norvegicus). Behavioural Genetics 21: 3548.CrossRefGoogle ScholarPubMed
BULLOCK, J., BOYLE, J. III and WANG, M.B. (1995) Physiology. Williams & Wilkins. Malvern, PA.Google Scholar
CASTANON, N., PEREZ-DIAZ, F. and MORMEDE, P. (1995) Genetic analysis of the relationships between behavioural and neuroendocrine traits in Roman high and low avoidance rat lines. Behavioural Genetics 25: 371384.CrossRefGoogle ScholarPubMed
CHAOULOFF, F. (1995) Regulation of 5-HT receptors by corticosteroids: where do we stand< Fundamental and Clinical Pharmacology 9: 219233.CrossRefGoogle ScholarPubMed
CHENG, H.W., DILLWORTH, G., SINGLETON, P., CHEN, Y. and MUIR, W.M. (2001a) Effect of genetic selection for productivity and longevity on blood concentrations of serotonin, catecholamine and corticosterone of chickens. Poultry Science 80: 12781285.CrossRefGoogle Scholar
CHENG, H.W., EICHER, S.D., CHEN, Y., SINGLETON, P. and MUIR, W.M. (2001b) Effect of genetic selection for group productivity and longevity on immunological and hematological parameters of chickens. Poultry Science 80: 10791086.CrossRefGoogle Scholar
CHENG, H.W. and MUIR, W.M. (2005) The effects of genetic selection for survivability and productivity on chicken physiological homeostasis. World's Poultry Science Journal 61: 383397.CrossRefGoogle Scholar
CHO, R., KAPUR, S., DU, L. and HRDINA, P. (1999) Relationship between central and peripheral serotonin 5-HT2A receptors: a positron emission tomography study in healthy individuals. Neuroscience Letter 261: 139142.CrossRefGoogle ScholarPubMed
CHOU, D.T., CUZZONE, H. and HIRSH, K.R. (1983) Assessment of blood platelets as a model for CNS response: comparative effects of caffeine on 5-HT uptake and release mechanisms in rat platelets and rat brain serotonin neurons. Journal of life science 33: 1149–56.CrossRefGoogle Scholar
COOK, E.H., STEIN, M.A., ELLISON, T., UNIS, A.S. and LEVENTHAL, B.L. (1995) Attention deficit hyperactivity disorder and whole-blood serotonin levels: effects of comorbidity. Psychiatry Research 57: 1320.CrossRefGoogle ScholarPubMed
COOK, E.H. and LEVENTHAL, B.L. (1996) The serotonin system in autism. Current Opinion Pediatrics 8: 348354.CrossRefGoogle ScholarPubMed
CONTIJOCH, A.M., GONZALEZ, C., SINGH, H.N., MALAMED, S., TRONCOSO, S. and ADVIS, J.P. (1992) Dopaminergic regulation of luteinizing hormone-releasing hormone release at the median eminence level: immunocytochemical and physiological evidence in hens. Neuroendocrinology 55: 290300.CrossRefGoogle ScholarPubMed
CORDA, M.G., LECCA, D., PIRAS, G., DI CHIARA, G. and GIORGI, O. (1997) Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman lowavoidance rats. Behavioural Genetics 27: 527536.CrossRefGoogle ScholarPubMed
CRAIG, J.V. and SWANSON, J.C. (1994) Review: welfare perspectives on hens kept for egg production. Poultry Science 73: 921938.CrossRefGoogle ScholarPubMed
CRAIG, J.V. and MUIR, W.M. (1996a) Group selection for adaptation to multiple-hen cages: beak-related mortality, feathering, and body weight responses. Poultry Science 75: 294302.CrossRefGoogle ScholarPubMed
CRAIG, J.V. and MUIR, W.M. (1996b) Group selection for adaptation to multiple-hen cages: behavioural responses. Poultry Science 75: 11451155.CrossRefGoogle Scholar
CRAIG, J.V., DEAN, W.F., HAVENSTEIN, G.B., KRUGER, K.K., NESTOR, K.E., PURCHASE, G.H., SIEGEL, P.B. and VAN WICKLEN, G.L. (1999) Guidelines for poultry husbandry. In: Guide for the care and use of agricultural animals in agricultural research and teaching. Federation of Animal Science Societies Pp. 5566.Google Scholar
CRUSIO, W.E. (1996) The neurobehavioural genetics of aggression. Behavioural Genetics 26: 459461.CrossRefGoogle ScholarPubMed
DATLA, K.P., SEN, A.P. and BHATTACHARYA, S.K. (1992) Dopaminergic modulation of footshock induced aggression in paired rats. Indian Journal Experimental Biology 30: 587591.Google ScholarPubMed
DAVIDSON, R.J., PUTNAM, K.M. and LARSON, C.L. (2000) Dysfunction in the neural circuitry of emotion regulation— a possible prelude to violence. Science 289: 591594.CrossRefGoogle ScholarPubMed
DE KLOET, E.R., KORTE, S.M., ROTS, N.Y. and KRUK, M.R. (1996) Stress hormones, genotype, and brain organization. Implications for aggression. Annals of the New York Academy Sciences 794: 179191.CrossRefGoogle ScholarPubMed
DE LEON, O.A. (1994) The neurobiological bases of aggression: the pharmacotherapeutic implications. Revista mé\edica de Panama 19: 106116.Google ScholarPubMed
DENNIS, R., ZHANG, H.M., BACON, L.D., ESTEVEZ, I. and CHENG, H.W. (2004) Behavioural and physiological features of chickens diversely selected for resistance to Avian Disease. 1. Selected inbred lines differ in behavioural and physical responses to social stress. Poultry Science 83: 1489–96.CrossRefGoogle ScholarPubMed
DENNIS, R., MUIR, W.M. and CHENG, H.W. (2006) Effects of raclopride on aggression and stress in diversely selected chicken lines. Behavioural Brain Research 175: 104111.CrossRefGoogle ScholarPubMed
DHABHAR, F.S., MILLER, A.H., STEIN, M., MCEWEN, B.S. and SPENCER, R.L. (1994) Diurnal and acute stress-induced changes in distribution of peripheral blood leukocyte subpopulations. Brain Behaviour and Immunity 8: 6679.CrossRefGoogle ScholarPubMed
DIETL, M.M. and PALACIOS, J.M. (1988) Neurotransmitter receptors in the avian brain. I. Dopamine receptors. Brain Research 439: 354359.CrossRefGoogle Scholar
DILLON, J.E., RALEIGH, M.J., MCGUIRE, M.T., BERGIN-POLLACK, D. and YUWILER, A. (1992) Plasma catecholamines and social behaviour in male vervet monkeys (Cercopithecus aethiops sabaeus). Physiology and Behaviour 51: 973977.CrossRefGoogle ScholarPubMed
DIMSDALE, J.E. and ZIEGLER, M.G. (1991) What do plasma and urinary measures of catecholamines tell us about human response to stressors< Circulation 83: II3642.Google ScholarPubMed
DINAN, T.G. (1996) Serotonin: current understanding and the way forward. International Clinical Psychopharmacology Suppl 1: 1921.CrossRefGoogle Scholar
DOHMS, J.E. and METZ, A. (1991) Stress—mechanisms of immunosuppression. Veterinary Immunology and Immunopathology 30: 89109.CrossRefGoogle ScholarPubMed
DRISCOLL, P., DEDEK, J., D'ANGIO, M., CLAUSTRE, Y. and SCATTON, B. (1990) A genetically-based model for divergent stress responses, behavioural, neurochemical and hormonal aspects. In: Pliska, V. and Stranzinger, G. eds. Farm animals in biomedical research. Hamburg: Verlag Paul Parey. Pp. 97107.Google Scholar
DRISCOLL, P., ESCORIHUELA, R.M., FERNANDEZ-TERUEL, A., GIORGI, O., SCHWEGLER, H., STEIMER, T., WIERSMA, A., CORDA, M.G., FLINT, J., KOOLHAAS, J.M., LANGHANS, W., SCHULZ, P.E., SIEGEL, J. and TOBENA, A. (1998) Genetic selection and differential stress responses. The Roman lines/strains of rats. Annals of the New York Academy Sciences 851: 501510.CrossRefGoogle ScholarPubMed
DUNCAN, I.J. (1998) Behaviour and behavioural needs. Poultry Science 77: 17661772.CrossRefGoogle Scholar
DYGALO, N.N., BYKOVA, T.S. and NAUMENKO, E.V. (1988) Brain tyrosine hydroxylase activity in behaviour-selected silver foxes. Zhurnal evoliutsionno<biokhimii i fiziologii 24: 503508.Google ScholarPubMed
EDEND, F.W. (1987) Agonistic behaviour and neurochemistry in grouped Japanese quail. Comparative Biochemistry and Physiology A 86: 473479.Google Scholar
ELDAGHAYES, I., ROTHWELL, L., WILLIAMS, A., WITHERS, D., BALU, S., DAVISON, F. and KAISER, P. (2006) Infectious bursal disease virus: strains that differ in virulence differentially modulate the innate immune response to infection in the chicken bursa. Viral Immunology 19: 8391.CrossRefGoogle ScholarPubMed
ETCHES, R.J., MACGREGOR, H.E., MORRIS, T.F. and WILLIAMS, J.B. (1983) Follicular growth and maturation in the domestic hen (Gallus domesticus). Journal of Reproduction Fertility 67: 351358.CrossRefGoogle ScholarPubMed
ETCHES, R.J., WILLIAMS, J.B. and RZASA, J. (1984) Effects of corticosterone and dietary changes in the hen on ovarian function, plasma LH and steroids and the response to exogenous LH-RH. Journal of Reproduction Fertility 70: 121130.CrossRefGoogle ScholarPubMed
FERNANDEZ, X., MEUNIER-SALAUN, M.C. and MORMEDE, P. (1994) Agonistic behaviour, plasma stress hormones, and metabolites in response to dyadic encounters in domestic pigs: interrelationships and effect of dominance status. Physiology and Behaviour 56: 841847.CrossRefGoogle ScholarPubMed
FERRIS, C.F. (2000). Adolescent stress and neural plasticity in hamsters: a vasopressin-serotonin model of inappropriate aggressive behaviour. Experimental Physiology 85: 85S90S.CrossRefGoogle ScholarPubMed
FRASER, D. and RUSHEN, J. (1987) Aggressive behaviour. Veterinary Clinics of North America-Food Animal Practice 3: 285305.CrossRefGoogle Scholar
GAILLARD, R.C. and AL-DAMLUJI, S. (1987) Stress and the pituitary-adrenal axis. Baillieres Clinical Endocrinology Metabolism 1: 319354.CrossRefGoogle ScholarPubMed
GEORGES, M. (1999) Towards marker assisted selection in livestock. Reproduction Nutrition Development 39: 555561.CrossRefGoogle ScholarPubMed
GLATZ, P.C. (2005) Beak trimming handbook. A report for the Australian poultry cooperative research centre. Poultry CRC Publication No 03-22.Google Scholar
GOLAN, J.K., LEE, R. and COCCARO, E.F. (2005) Developmental psychopathology and neurobiology of aggression. Development and Psychopathology 17: 11511171.Google Scholar
GOLDSTEIN, S.D. (1981) Plasma norepinephrine as an indicator of sympathetic neural activity in clinical cardiology. American Journal Cardiology 48: 11471154.CrossRefGoogle ScholarPubMed
GONZALEZ, M.I., GREENGRASS, P., RUSSELL, M. and WILSON, C.A. (1997) Comparison of serotonin receptor numbers and activity in specific hypothalamic areas of sexually active and inactive female rats. Neuroendocrinology 66: 384392.CrossRefGoogle ScholarPubMed
GOODSON, J.L. (2005) The vertebrate social behaviour network: evolutionary themes and variations. Hormones and Behaviour 48: 1122.CrossRefGoogle ScholarPubMed
GROSS, W.B. and COLMANO, G. (1970) Corticosterone and ACTH as treatments for Escherichia coli infection in chickens. Poultry Science 49: 12561258.CrossRefGoogle ScholarPubMed
GROSS, W.B. and COLMANO, G. (1971) Effect of infectious agents on chickens selected for plasma corticosterone response to social stress. Poultry Science 50: 12131220.CrossRefGoogle ScholarPubMed
HALLER, J., MAKARA, G.B. and KRUK, M.R. (1997) Catecholaminergic involvement in the control of aggression: hormones, the peripheral sympathetic, and central noradrenergic systems. Neuroscience and Biobehavioural reviews 22: 8597.CrossRefGoogle Scholar
HANNA, G.L., YUWILER, A. and COATES, J.K. (1995) Whole blood serotonin and disruptive behaviours in juvenile obsessive-compulsive disorder. Journal of the American Academy of Child and Adolescent Psychiatry 34: 2835.CrossRefGoogle ScholarPubMed
HESTER, P.Y., MUIR, W.M., CRAIG, J.V. and ALBRIGHT, J.L. (1996a) Group selection for adaptation to multiple-hen cages: production traits during heat and cold exposures. Poultry Science 75: 13081314.CrossRefGoogle ScholarPubMed
HESTER, P.Y., MUIR, W.M. and CRAIG, J.V. (1996b) Group selection for adaptation to multiple-hen cages: humoral immune response. Poultry Science 75: 13151320.CrossRefGoogle ScholarPubMed
HESTER, P.Y., MUIR, W.M., CRAIG, J.V. and ALBRIGHT, J.L. (1996c) Group selection for adaptation to multiple-hen cages: hematology and adrenal function. Poultry Science 75: 12951307.CrossRefGoogle ScholarPubMed
HIGLEY, J.D., KING, S.T., HASERT, M.F., CHAMPOUX, M., SUOMI, S.J. and LINNOILA, M. (1996) Stability of interindividual differences in serotonin function and its relationship to severe aggression and competent social behaviour in Rhesus macaque females. Neuropsychopharmacology 14: 6776.CrossRefGoogle ScholarPubMed
HJEMDAHL, P. (1993) Plasma catecholamines—analytical challenges and physiological limitations. Baillieres Clinical Endocrinology Metabolism 7: 307–53.CrossRefGoogle ScholarPubMed
JERNEJ, B. and CICIN-SAIN, L. (1990) Platelet serotonin level in rats is under genetic control. Psychiatry Research 32: 167174.CrossRefGoogle ScholarPubMed
JERNEJ, B., BANOVIC, M., CICIN-SAIN, L., HRANILOVIC, D., BALIJA, M., ORESKOVIC, D. and FOLNEGOVIC-SMALC, V. (2000) Physiological characteristics of platelet/circulatory serotonin: study on a large human population. Psychiatry Research 94: 153162.CrossRefGoogle Scholar
JOELS, M., HESEN, W. and DE KLOET, E.R. (1995) Long-term control of neuronal excitability by corticosteroid hormones. The Journal of steroid biochemistry and molecular biology 53: 315323.CrossRefGoogle ScholarPubMed
JONES, R.B., SATTERLEE, D.G. and RYDER, F.H. (1992) Research note: open-field behaviour of Japanese quail chicks genetically selected for low or high plasma corticosterone response to immobilization stress. Poultry Science 71: 14031407.CrossRefGoogle ScholarPubMed
JONES, R.B., MILLS, A.D., FAURA, J.M. and WILLIAMS, J.B. (1994) Restraint, fear, and distress in Japanese quail genetically selected for long or short tonic immobility reactions. Physiology and Behaviour 56: 529534.CrossRefGoogle ScholarPubMed
JONES, R.B. and SATTERLEE, D.G. (1996) Threat-induced behavioural inhibition in Japanese quail genetically selected for contrasting adrenocortical response to mechanical restraint. British poultry science 37: 465–70.CrossRefGoogle ScholarPubMed
KANNAN, G., HEATH, J.L., WABECK, C.J., SOUZA, M.C., HOWE, J.C. and MENCH, J.A. (1997) Effects of crating and transport on stress and meat quality characteristics in broilers. Poultry Science 76: 523529.CrossRefGoogle ScholarPubMed
KAPPES, S.M. (1999) Utilization of gene mapping information in livestock animals. Theriogenolog 51: 135147.CrossRefGoogle ScholarPubMed
KILGOUR, R.J. and SZANTAR-CODDINGTON, M.R. (1997) The arena test and cortisol response of sheep as indirect selection criteria for the improvement of lamb survival. Animal reproduction science 46: 97108.CrossRefGoogle ScholarPubMed
KOOLHAAS, J.M., KORTE, S.M., DE BOER, S.F., VAN DER VEGT, B.J., VAN REENEN, C.G., HOPSTER, H., DE JONG, I.C., RUIS, M.A. and BLOKHUIS, H.J. (1999). Coping styles in animals: current status in behaviour and stress-physiology. Neuroscience and biobehavioural reviews 23: 925935.CrossRefGoogle ScholarPubMed
KOPIN, I.J. (1984) Avenues of investigation for the role of catecholamines in anxiety. Psychopathology Suppl 1: 8397.CrossRefGoogle ScholarPubMed
KORTE, S.M., MEIJER, O.C., DE KLOET, E.R., BUWALDA, B., KEIJSER, J., SLUYTER, F., VAN OORTMERSSEN, G. and BOHUS, B. (1996). Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Research 736: 338343.CrossRefGoogle ScholarPubMed
KORZAN, W.J., FORSTER, G.L., WATT, M.J. and SUMMERS, C.H. (2006) Dopaminergic activity modulation via aggression, status, and a visual social signal. Behavioural Neuroscience 120: 93102.CrossRefGoogle Scholar
KRUK, M.R., WESTPHAL, K.G., VAN ERP, A.M., VAN ASPEREN, J., CAVE, B.J., SLATER, E., DE KONING, J. and HALLER, J. (1998) The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neuroscience and biobehavioural reviews 23: 163177.CrossRefGoogle ScholarPubMed
KUCHEL, O. (1991) Stress and catecholamines. In: Stress Revisited. I. Neuroendocrinology of stress. Jasmin, G. and Cantin, M. eds. Methods achieve Exp Pathol. Basel Karger. Vol. 14. pp 80103.Google Scholar
KUCHEL, O., BUU, N.T. and WANG, P.C. (1982) Stress, catecholamines and hypertension: Respective roles of free and conjugated catecholamines. Stress 3: 2231.Google Scholar
KUDRIAVTSEVA, N.N., NIKULINA, E.M. and POPOVA, N.K. (1988) Participation of the dopamine of the striatum and the nucleus accumbens in the formation of aggressive and submissive behaviours in mice. Zhurnal vysshe¿ nervno¿ deiatelnosti imeni I P Pavlova 38: 11681170.Google ScholarPubMed
KUIKKA, J.T., TIIHONEN, J., BERGSTROM, K.A., KARHU, J., RASANEN, P. and ERONEN, M. (1998) Abnormal structure of human striatal dopamine re-uptake sites in habitually violent alcoholic offenders: a fractal analysis. Neuroscience Letter 253: 195197.CrossRefGoogle ScholarPubMed
KULIKOV, A.V., ZHANAEVA, E.L.U. and POPOVA, N.K. (1989) Change in tryptophan hydroxylase activity in the brain of silver foxes and wild Norway rats in the course of selection according to behaviour. Genetika 25: 346350.Google Scholar
LAMONT, S.J. (1994) Poultry immunogenetics: which way do we go< Poultry Science 73: 10441048.CrossRefGoogle Scholar
LANG, G.F., ETCHES, R.J. and WALTON, J.S. (1984) Effects of luteinizing hormone, progesterone, testosterone, estradiol and corticosterone on ovulation and luteinizing hormone release in hens treated with aminoglutethimide. Biology of Reproduction 30: 278288.CrossRefGoogle ScholarPubMed
LAMPUGNANI, M.G., BUCZKO, W., CECI, A., MENNINI, A. and DE GAETANO, G. (1986) Normal serotonin uptake by blood platelets and brain synaptosomes but selective impairment of platelet serotonin storage in mice with Chediack-Higashi syndrome. Life of Science 38: 21932198.CrossRefGoogle ScholarPubMed
LECHIN, F., VAN DER DIJS, B., OROZCO, B., LECHIN, A.E., BAEZ, S., LECHIN, M.E., BENAIM, M., ACOSTA, E., AROCHA, L., JIMENEZ, V., LEON, G. and GARCIA, Z. (1996) Plasma neurotransmitters, blood pressure and heart rate during supine resting, orthostasis and moderate exercise in severely ill patients: a model of failing to cope with stress. Psychotherapy and Psychosomatics 65: 129136.CrossRefGoogle Scholar
LENDERS, J.W.M., BRUNER, H.G., MURPHY, D.L. and EISENHOFER, G. (1998) Gebetic deficiencies of monoamine oxidate enzymes: A key to understanding the function of the enzymes in humans. In: Chen, K. and Shih, J.C.. Advances in Pharmacology. Academic Press. Vol. 42, pp. 297301.Google Scholar
LEWIS, M.H., GARIEPY, J.L., GENDREAU, P., NICHOLS, D.E. and MAILMAN, R.B. (1994) Social reactivity and D1 dopamine receptors: studies in mice selectively bred for high and low levels of aggression. Neuropsychopharmacology 10: 115122.CrossRefGoogle ScholarPubMed
LORRAIN, D.S., MATUSZEWICH, L. and HULL, E.M. (1998) 8-OH-DPAT influences extracellular levels of serotonin and dopamine in the medial preoptic area of male rats. Brain Research 790: 217223.CrossRefGoogle ScholarPubMed
MACNAMEE, M.C. and SHARP, P.J. (1989) The functional activity of hypothalamic dopamine in broody bantam hens. The Journal of Endocrinology 121: 6774.CrossRefGoogle ScholarPubMed
MARAZZITI, D., PALEGO, L., SILVESTRI, S., PRESTA, S., BALESTRI, C., BATISTINI, A. and CONTI, L. (1996) Platelet abnormalities in aggressive subjects with mental deficiency. Journal of Psychiatry and Neuroscience 21: 109113.Google ScholarPubMed
MARTIN, F. and ARTIGAS, F. (1992) Simultaneous effects of p-chloroamphetamine, d-fenfluramine, and reserpine on free and stored 5-hydroxytryptamine in brain and blood. Journal of Neurochemistry 59: 1138–44.CrossRefGoogle ScholarPubMed
MARTIN, W.H., ROGOL, A.D., KAISER, D.L. and THORNER, M.O. (1981) Dopaminergic mechanisms and luteinizing hormone (LH) secretion. II. Differential effects of dopamine and bromocriptine on LH release in normal women. The Journal of Clinical Endocrinology and Metabolism 52: 650656.CrossRefGoogle ScholarPubMed
MASWOOD, N., CALDAROLA-PASTUSZKA, M. and UPHOUSE, L. (1998) Functional integration among 5-hydroxytryptamine receptor families in the control of female rat sexual behaviour. Brain Research 802: 98103.CrossRefGoogle Scholar
MENCH, J.A. (1992) Introduction: applied ethology and poultry science. Poultry Science 71: 631633.CrossRefGoogle ScholarPubMed
MENCH, J.A. and SHEA-MOORE, M. (1995) Moods, minds and molecules: the neurochemistry of social behaviour. Applied Animal Behaviour Science 44: 99118.CrossRefGoogle Scholar
MENCH, J.A. and DUNCAN, I.J. (1998) Poultry welfare in North America: opportunities and challenges. Poultry Science 77: 17631765.CrossRefGoogle ScholarPubMed
MENDELSON, S.D. (1992) A review and reevaluation of the role of serotonin in the modulation of lordosis behaviour in the female rat. Neuroscience and Biobehavioural Reviews 16: 309350.CrossRefGoogle ScholarPubMed
MENDELSON, S.D. and GORZALKA, B.B. (1985) A facilitatory role for serotonin in the sexual behaviour of the female rat. Pharmacology, Biochemistry and Behaviour 22: 10251033.CrossRefGoogle ScholarPubMed
MENDELSON, S.D. and MCEWEN, B.S. (1992) Autoradiographic analyses of the effects of adrenalectomy and corticosterone on 5-HT1A and 5-HT1B receptors in the dorsal hippocampus and cortex of the rat. Neuroendocrinology 55: 444450.CrossRefGoogle ScholarPubMed
MERSMANN, H.J. (1998) Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. Journal of Animal Science 76: 160172.CrossRefGoogle ScholarPubMed
MICZEK, K.A., WEERTS, E., HANEY, M. and TIDEY, J. (1994) Neurobiological mechanisms controlling aggression: preclinical developments for pharmacotherapeutic interventions. Neuroscience and Biobehavioural Reviews 18: 97110.CrossRefGoogle ScholarPubMed
MILLARD, S.A., COSTA, E. and GAL, E.M. (1972) On the control of brain serotonin turnover rate by end product inhibition. Brain Research 40: 545551.CrossRefGoogle ScholarPubMed
MILLS, A.D. and FAURE, J.M. (1991) Divergent selection for duration of tonic immobility and social reinstatement behaviour in Japanese quail (Coturnix coturnix japonica) chicks. Journal of Comparative Psychology 105: 2538.CrossRefGoogle ScholarPubMed
MOFFITT, T.E., BRAMMER, G.L., CASPI, A., FAWCETT, J.P., RALEIGH, M., YUWILER, A. and SILVA, P. (1998) Whole blood serotonin relates to violence in an epidemiological study. Biological Psychiatry 43: 446457.CrossRefGoogle Scholar
MORELLO, H., CALIGARIS, L., HAYMAL, B. and TALEISNIK, S. (1992) Daily variations in the sensitivity of proestrous LH surge in the inhibitory effect of intraventricular injection of 5-HT or GABA in rats. Canadian Journal of Physiology and Pharmacology 70: 447451.CrossRefGoogle ScholarPubMed
MUCK-SELER, D., PIVAC, N., JAKOVLJEVIC, M. and BRZOVIC, Z. (1999) Platelet serotonin, plasma cortisol, and dexamethasone suppression test in schizophrenic patients. Biological Psychiatry 45: 14331439.CrossRefGoogle ScholarPubMed
MUIR, W.M. (1996) Group selection for adaptation to multiple-hen cages: selection program and direct responses. Poultry Science 75: 447458.CrossRefGoogle ScholarPubMed
MUIR, W.M. and CRAIG, J.V. (1998) Improving animal well-being through genetic selection. Poultry Science 77: 17811788.CrossRefGoogle ScholarPubMed
MUNCK, A., GUYRE, P.M. and HOLBROOK, N.J. (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews 5: 2544.CrossRefGoogle ScholarPubMed
NAGATSUKA, Y. (1983) The regulation of pituitary gonadotropin release of the frontal lobe neocortex. (II). In relation to serotonergic neurons. Nippon Naibunpi Gakkai Zasshi 59: 18741883.Google Scholar
NANKOVA, B.B. and SABBAN, E.L. (1999) Multiple signalling pathways exist in the stress-triggered regulation of gene expression for catecholamine biosynthetic enzymes and several neuropeptides in the rat adrenal medulla. Acta Physiologica Scandinavica 167: 19.CrossRefGoogle ScholarPubMed
NAUMENKO, E.V., POPOVA, N.K. and IVANOVA, L.N. (1987) Neuroendocrine and neurochemical mechanisms of the domestication of animals. Genetika 23: 10111025.Google ScholarPubMed
NAUMENKO, E.V., POPOVA, N.K., NIKULINA, E.M., DYGALO, N.N., SHISHKINA, G.T., BORODIN, P.M. and MARKEL, A.L. (1989) Behaviour, adrenocortical activity, and brain monoamines in Norway rats selected for reduced aggressiveness towards man. Pharmacology, Biochemistry, and Behaviour 33: 8591.CrossRefGoogle ScholarPubMed
NESTOR, K.E., ANDERSON, J.W. and PATTERSON, R.A. (2000) Genetics of growth and reproduction in the turkey. 14. Changes in genetic parameters over thirty generations of selection for increased body weight. Poultry Science 79: 445452.CrossRefGoogle ScholarPubMed
NIKULINA, E.M. and KAPRALOVA, N.S. (1991) The role of dopamine receptors in controlling mouse aggressivity: the genotype dependence. Zhurnal vysshe¿ nervno¿ deiatelnosti imeni I P Pavlova 41: 734740.Google ScholarPubMed
NIKULINA, E.M. and KAPRALOVA, N.S. (1992) Role of dopamine receptors in the regulation of aggression in mice; relationship to genotype. Neuroscience and Behavioural Physiology 22: 364369.CrossRefGoogle ScholarPubMed
NOMURA, M. and NOMURA, Y. (2006) Psychological, neuroimaging, and biochemical studies on functional association between impulsive behaviour and the 5-HT2A receptor gene polymorphism in humans. Annals of the New York Academy Sciences 1086: 134143.CrossRefGoogle ScholarPubMed
OLIVIER, B., VAN OORSCHOT, R. and WALDINGER, M.D. (1998) Serotonin, serotonergic receptors, selective serotonin reuptake inhibitors and sexual behaviour. International Clinical Psychopharmacology 13 Supply 6: S914.CrossRefGoogle ScholarPubMed
OQUENDO, M.A. and MANN, J.J. (2000) The biology of impulsivity and suicidal. The Psychiatric Clinics of North America 23: 1125.CrossRefGoogle Scholar
OSSOWSKA, G., KLENK-MAJEWSKA, B. and ZEBROWSKA-LUPINA, I. (1996) Acute effect of dopamine agonists and some antidepressants in stress-induced deficit of fighting behaviour. Polish Journal of Pharmacology 48: 403408.Google Scholar
OWENS, R.E., FLEEGER, J.L. and HARMS, P.G. (1980) Evidence for central nervous system (CNS) involvement in inhibition of luteinizing hormone (LH) release by dopamine receptor stimulation. Endocrine Research Communications 7: 99105.CrossRefGoogle ScholarPubMed
PANT, K.K. and NATH, C. (1993) Dopaminergic involvement in the effects of piracetam on foot shock induced aggression in mice. The Indian Journal of Medical Research 98: 155159.Google ScholarPubMed
WPSMIGIANI, S., PALANZA, P., ROGERS, J. and FERRARI, P.F. (1999) Selection, evolution of behaviour and animal models in behavioural neuroscience. Neuroscience and Biobehavioural Reviews 23: 957969.Google Scholar
PAUL, S.M., REHAVI, M., SKOLNICK, P. and GOODWIN, F.K. (1980) Demonstration of specific “high affinity” binding sites for [3H] imipramine on human platelets. Life Sciences 26: 953959.CrossRefGoogle ScholarPubMed
PIERCECCHI-MARTI, M.D., LEONETTI, G., PELISSIER, A.L., CONRATH, J., CIANFARANI, F. and VALLI, M. (1999) Evaluation of biological stress markers in police officers. Medicine and Law 18: 125144.Google ScholarPubMed
PIETRASZEK, M.H., TAKADA, Y., YAN, D., URANO, T., SERIZAWA, K. and TAKADA, A. (1992) Relationship between serotonergic measures in periphery and the brain of mouse. Life Sciences 51: 7582.CrossRefGoogle ScholarPubMed
PLETSCHER, A. (1988) Platelets as models: use and limitations. Experientia 44: 152155.CrossRefGoogle Scholar
POLLARD, T.M. (1997) Physiological consequences of everyday psychosocial stress. Collegium Antropologicum 21: 1728.Google ScholarPubMed
POPOVA, N.K. (2006) From genes to aggressive behaviour: the role of serotonergic system. Bioessays 28: 495503.CrossRefGoogle ScholarPubMed
POPOVA, N.K., VOITENKO, N.N. and TRUT, L.N. (1975) Changes in the content of serotonin and 5- hydroxyindoleacetic acid in the brain during selection of silver foxes according to behaviour. Doklady Akademii nauk SSSR 223: 14981500.Google Scholar
POPOVA, N.K., KUDRIAVTSEVA, N.N. and LUBSANOVA, S.D. (1978) Genetic control of the tissue concentration of serotonin in mice. Genetika 14: 18041808.Google ScholarPubMed
POPOVA, N.K., KULIKOV, A.V., AVGUSTINOVICH, D.F., VOITENKO, N.N. and TRUT, L.N. (1997) Effect of domestication of the silver fox on the main enzymes of serotonin metabolism and serotonin receptors. Genetika 33: 370374.Google ScholarPubMed
POPOVA, N.K., BARYKINA, N.N., PLIUSNINA, I.Z., ALEKHINA, T.A. and KOLPAKOV, V.G. (1999) Manifestation of fear response in rats genetically predisposed to various kinds of defense behaviour. Rossi¿skii fiziologicheski¿ zhurnal imeni I.M. Sechenova/Rossi¿skaia akademiia nauk 85: 99104.Google Scholar
RALEIGH, M.J., MCGUIRE, M.T., BRAMMER, G.L., POLLACK, D.B. and YUWILER, A. (1991) Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys. Brain Research 559: 181190.CrossRefGoogle ScholarPubMed
RENDEN, J.A., LIEN, R.J., OATES, S.S. and BILGILI, S.F. (1994) Plasma concentrations of corticosterone and thyroid hormones in broilers provided various lighting schedules. Poultry Science 73: 186193.CrossRefGoogle ScholarPubMed
RICHFIELD, E.K., YOUNG, A.B. and PENNEY, J.B. (1987) Comparative distribution of dopamine D-1 and D-2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys. Journal of Comparative Neurology 262: 446463.CrossRefGoogle ScholarPubMed
ROSENBURG, T.B., TUYTTENS, F.A., SONCK, B., DE REU, K., HERMAN, L. and ZOONS, J. (2005) Welfare, health, and hygiene of laying hens housed in furnished cages and in alternative housing systems. Journal Applied Animal Welfare Science 8: 211226.CrossRefGoogle Scholar
ROLIH, C.A. and OBER, K.P. (1995) The endocrine response to critical illness. The Medical Clinics of North America 79: 211224.CrossRefGoogle ScholarPubMed
ROTS, N.Y., COOLS, A.R., DE JONG, J. and DE KLOET, E.R. (1995) Corticosteroid feedback resistance in rats genetically selected for increased dopamine responsiveness. Journal of Neuroendocrinology 7: 153161.CrossRefGoogle ScholarPubMed
SAPOLSK, R.M. (1990) Stress in the wild. Scientific American 262: 116123.CrossRefGoogle Scholar
SAPOLSKY, R.M. and MEANEY, M.J. (1986) Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Research 396: 6476.CrossRefGoogle ScholarPubMed
SAVORY, C.J. and MANN, J.S. (1997) Is there a role for corticosterone in expression of abnormal behaviour in restricted-fed fowls< Physiology and Behaviour 62: 713.CrossRefGoogle Scholar
SCOTT, P.A., CIERPIAL, M.A., KILTS, C.D. and WEISS, J.M. (1996) Susceptibility and resistance of rats to stress-induced decreases in swim-test activity: a selective breeding study. Brain Research 725: 217230.CrossRefGoogle ScholarPubMed
SERVO, L.I. and NAUMANKO, E.V. (1990) The brain catecholamine systems in the regulation of dominance. Zhurnal vysshe¿ nervno¿ deiatelnosti imeni I P Pavlova 40: 490496.Google Scholar
SGOIFO, A., DE BOER, S.F., HALLER, J. and KOOLHAAS, J.M. (1996) Individual differences in plasma catecholamine and corticosterone stress responses of wild-type rats: relationship with aggression. Physiology and Behaviour 60: 14031407.CrossRefGoogle ScholarPubMed
SHAIKH, M.B., LU, C.L., MACGREGOR, M. and SIEGEL, A. (1991) Dopaminergic regulation of quiet biting attack behaviour in the cat. Brain Research Bulletin 27: 725730.CrossRefGoogle ScholarPubMed
SHARP, P.J. and BEUVING, G. (1978) The role of corticosterone in the ovulatory cycle of the hen. Journal of Endocrinology 78: 195200.CrossRefGoogle ScholarPubMed
SHARP, P.J., MACNAMEE, M.C., TALBOT, R.T., STERLING, R.J. and HALL, T.R. (1984) Aspects of the neuroendocrine control of ovulation and broodiness in the domestic hen. Journal of Experimental Zoology 232: 475483.CrossRefGoogle ScholarPubMed
SHIVELY, C. and KAPLAN, J. (1984) Effects of social factors on adrenal weight and related physiology of Macaca fascicularis. Physiology and Behaviour 33: 777782.CrossRefGoogle ScholarPubMed
SIEGEL, H.S. (1971) Cold-induced necrosis in toes of chicks receiving daily dosages of adrenocorticotropin. General and Comparative Endocrinology 16: 281287.CrossRefGoogle ScholarPubMed
SIEGEL, A., ROELING, T.A., GREGG, T.R. and KRUK, M.R. (1999) Neuropharmacology of brainstimulation-evoked aggression. Neuroscience and Biobehavioural Reviews 23: 359389.CrossRefGoogle ScholarPubMed
SIEGEL, H.S. (1995) Gordon Memorial Lecture. Stress, strains and resistance. Bristol Poultry Science 36: 322.CrossRefGoogle ScholarPubMed
SIEGEL, P.B. and DUNNINGTON, E.A. (1997) Genetic selection strategies—population genetics. Poultry Science 76: 10621065.CrossRefGoogle ScholarPubMed
SIROTKIN, A.V. and SCHAEFFER, H.J. (1997) Direct regulation of mammalian reproductive organs by serotonin and melatonin. Journal of Endocrinology 154: 15.CrossRefGoogle ScholarPubMed
SNIDER, S.R. and KUCHEL, O. (1983) Dopamine: an important neurohormone of the sympathoadrenal system: Significance of increased peripheral dopamine release for the human stress response and hypertension. Endocrine Reviews 4: 291309.CrossRefGoogle ScholarPubMed
SOTOWSKA-BROCHOCKA, J., MARTYNSKA, L. and LICHT, P. (1994) Dopaminergic inhibition of gonadotropic release in hibernating frogs, Rana temporaria. General and Comparative Endocrinology 93: 192196.CrossRefGoogle ScholarPubMed
STAHL, S.M. (1977) The human platelet. A diagnostic and research tool for the study of biogenic amines in psychiatric and neurologic disorders. Archives of General Psychiatry 34: 509516.CrossRefGoogle Scholar
STAHL, S.M., CIARANELL, R.D. and BERGER, P.A. (1982) Platelet serotonin in schizophrenia and depression. In: Ho, B.T., Schoolar, J.C. and Usdin, E. eds. Serotonin in biological psychiatry. New York: Raven Press.Google Scholar
STANULIS, E.D., MATULKA, R.A., JORDAN, S.D., ROSECRANS, J.A. and HOLSAPPLE, M.P. (1997) Role of corticosterone in the enhancement of the antibody response after acute cocaine administration. Journal of Pharmacology and Experimental Therapeutics 280: 284291.Google ScholarPubMed
STEKLIS, H.D., RALEIGH, M.J., KLING, A.S. and TACHIKI, K. (1986) Biochemical and hormonal correlates of dominance and social behaviour in all-male groups of squirrel monkeys (Saimiri sciureus). American Journal of Primatology 11: 133145.CrossRefGoogle ScholarPubMed
SUMMERS, C.H., LARSON, E.T., RONAN, P.J., HOFMANN, P.M., EMERSON, A.J. and RENNER, K.J. (2000) Serotonergic responses to corticosterone and testosterone in the limbic system. General and Comparative Endocrinology 117: 151159.CrossRefGoogle ScholarPubMed
TABLANTE, N.L., VAILLANCOURT, J.P., MARTIN, S.W., SHOUKRI, M. and ESTEVEZ, I. (2000) Spatial distribution of cannibalism mortality in commercial laying hens. Poultry Science 79: 705708.CrossRefGoogle ScholarPubMed
TAKADA, A., URANO, T., YOSHIDA, M. and TAKADA, Y. (1996) Comparison of changes in serotonergic measures in whole blood or plasma and brain in rats given nicotine and/or stresses. Polish Journal of Pharmacology 48: 173177.Google ScholarPubMed
TASAKA, K., MIYAKE, A., SAKUMOTO, T. and AONO, T. (1985) Dopamine decreases release of luteinizing hormone releasing hormone from superfused rat mediobasal hypothalamus. Journal of Endocrinological Investigation 8: 373376.CrossRefGoogle ScholarPubMed
TECOTT, L.H. and BARONDES, S.H. (1996) Genes and aggressiveness: Behavioural genetics. Current Biology 6: 238240.CrossRefGoogle Scholar
TEMPEL, D.L. and LEIBOWITZ, S.F. (1994) Adrenal steroid receptors: interactions with brain neuropeptide systems in relation to nutrient intake and metabolism. Journal of Neuroendocrinology 6: 479501.CrossRefGoogle ScholarPubMed
THIERY, J.C., GAYRARD, V., LE CORRE, S., VIGUIE, C., MARTIN, G.B., CHEMINEAU, P. and MALPAUX, B. (1995) Dopaminergic control of LH secretion by the A15 nucleus in anoestrous ewes. Journal of Reproduction and Fertility Suppl. 49: 285296.Google ScholarPubMed
THOMPSON, D.L., ELGERT, K.D., GROSS, W.B. and SIEGEL, P.B. (1980) Cell-mediated immunity in Marek's disease virus-infected chickens genetically selected for high and low concentrations of plasma corticosterone. American Journal of Veterinary Research 41: 9196.Google ScholarPubMed
TUOMISTO, J. and MANNISTO, P. (1985) Neurotransmitter regulation of anterior pituitary hormones. Pharmacological Reviews 37: 249332.Google ScholarPubMed
UNIS, A.S., COOK, E.H., VINCENT, J.G., GJERDE, D.K., PERRY, B.D., MASON, C. and MITCHELL, J. (1997) Platelet serotonin measures in adolescents with conduct disorder. Biological Psychiatry 42: 553559.CrossRefGoogle ScholarPubMed
VADASZ, C., KOBOR, G. and LAJTHA, A. (1992) Motor activity and the mesotelencephalic dopamine function. I. High-resolution temporal and genetic analysis of open-field behaviour. Behavioural Brain Research 48: 2939.CrossRefGoogle Scholar
VAN ERP, A.M. and MICZEK, K.A. (2006) Increased accumbal dopamine during daily alcohol consumption and subsequent aggressive behaviour in rats. Psychopharmacology (in press).Google ScholarPubMed
VALZELLI, L. (1984) Reflections on experimental and human pathology of aggression. Prog Neuropsychopharmacol Biological Psychiatry 8: 311325.CrossRefGoogle ScholarPubMed
VIRKKUNEN, M. and LINNOILA, M. (1997) Serotonin in early-onset alcoholism. Recent Developments in Alcoholism 13: 173189.Google ScholarPubMed
VOGEL, W.H. and HARRIS, N. (1991) Learning and memory of a water T-maze by rats selectively bred for low or high plasma catecholamine stress responses. Behavioural Neural Biology 56: 113117.CrossRefGoogle ScholarPubMed
VOLAVKA, J., BILDER, R. and NOLAN, K. (2004) Catecholamines and aggression: the role of COMT and MAO polymorphisms. Annals of the New York Academy Sciences 1036: 393398.CrossRefGoogle ScholarPubMed
VOLLMER, R.R. (1996) Selective neural regulation of epinephrine and norepinephrine cells in the adrenal medulla —cardiovascular implications. Clinical and Experimental Hypertension 18: 731751.CrossRefGoogle ScholarPubMed
WALKER, E.A., YAMAMOTO, T., HOLLINGSWORTH, P.J., SMITH, C.B. and WOODS, J.H. (1991) Discriminative-stimulus effects of quipazine and l-5-hydroxytryptophan in relation to serotonin binding sites in the pigeon. Journal of Pharmacology Experimental Therapeutics 259: 772782.Google ScholarPubMed
WATT, M.J., FORSTER, G.L., KORZAN, W.J., RENNER, K.J. and SUMMERS, C.H. (2006) Rapid neuroendocrine responses evoked at the onset of social challenge. Physiology and Behaviour (in press).Google ScholarPubMed
WEIGER, W.A. (1997) Erotonergic modulation of behaviour: a phylogenetic overview. Biological Reviews of the Cambridge Philosophical Society 72: 6195.CrossRefGoogle Scholar
WESTERGAARD, G.C., SUOMI, S.J., HIGLEY, J.D. and MEHLMAN, P.T. (1999) CSF 5-HIAA and aggression in female macaque monkeys: species and interindividual differences. Psychopharmacology 146: 440446.CrossRefGoogle ScholarPubMed
WILSON, C.A. and HUNTER, A.J. (1985) Progesterone stimulates sexual behaviour in female rats by increasing 5-HT activity on 5-HT2 receptors. Brain Research 333: 223229.CrossRefGoogle Scholar
WOLF, A., CALDAROLA-PASTUSZKA, M. and UPHOUSE, L. (1998) Facilitation of female rat lordosis behaviour by hypothalamic infusion of 5-HT(2A/2C) receptor agonists. Brain Research 779: 8495.CrossRefGoogle ScholarPubMed
WRASE, J., REIMOLD, M., PULS, I., KIENAST, T. and HEINZ, A. (2006) Serotonergic dysfunction: brain imaging and behavioural correlates. Cognitive Affective and Behavioural Neuroscience 6: 5361.CrossRefGoogle Scholar
YAN, D., URANO, T., PIETRASZEK, M.H., SHIMOYAMA, I., UEMURA, K., KOJIMA, Y., SAKAKIBARA, K., SERIZAWA, K., TAKADA, Y. and TAKADA, A. (1993) Correlation between serotonergic measures in cerebrospinal fluid and blood of subhuman primate. Life of Science 52: 745749.CrossRefGoogle ScholarPubMed
YOUNG, W.F. JR, LAWS, E.R. JR, SHARBROUGH, F.W. and WEINSHILBOUM, R.M. (1986) Human monoamine oxidase. Lack of brain and platelet correlation. Archives of General Psychiatry 43: 604609.CrossRefGoogle ScholarPubMed