Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T02:02:52.394Z Has data issue: false hasContentIssue false

The effects of climate change on avian migratory patterns and the dispersal of commercial poultry diseases in Canada - Part II

Published online by Cambridge University Press:  25 February 2013

C.D. PATTERSON*
Affiliation:
Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph ON, N1G 2W1, Canada
M.T. GUERIN
Affiliation:
Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph ON, N1G 2W1, Canada
*
Corresponding author: [email protected]
Get access

Abstract

Climate change has already provoked a northward shift in the geographic range of many bird species, and current climate projections favour the modification of avian distributions and migratory routes. Given that wild birds are recognised as pathogen-dispersing agents, there is concern that changes in migrant ranges and movement patterns will increase the frequency of bird-borne pathogens reaching Northern areas, such as Canada. Furthermore, climate change will likely affect vector, pathogen, and reservoir ecology, which could contribute to changes in the range limits, the intensity of disease transmission and, under some circumstances, the risk of emergence and re-emergence of pathogens affecting commercial poultry.

However, the role of wild birds in the perpetuation of disease is unclear. Even if climate change increases the introduction of zoonotic and bird-borne pathogens into Canada, it is difficult to predict whether this will increase the occurrence of diseases in poultry. It is likely that outbreaks will become more unpredictable, which will complicate efforts to identify periods and areas of high risk. Efforts to manage and control these events in the face of climate change will require proper biosecurity measures, in addition to more consistent surveillance of sentinel and high-risk carrier species to avert the potential risk of diseases dispersing into Canada.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALEXANDER, D.J. (2000) A review of avian influenza in different bird species. Veterinary Microbiology 74: 3-13.CrossRefGoogle ScholarPubMed
ALEXANDER, D.J. and CAPUA, I. (2008) Avian influenza in poultry. World's Poultry Science Journal 64: 513-531.CrossRefGoogle Scholar
ALTIZER, S., BARTEL, R. and HAN, B.A. (2011) Animal migration and infectious disease risk. Science 331: 296-302.CrossRefGoogle ScholarPubMed
AUSTIN, G.E. and REHFISCH, M.M. (2005) Shifting non-breeding distributions of migratory fauna in relation to climatic change. Global Change Biology 11: 31-38.CrossRefGoogle Scholar
BAIRLEIN, F. and HÜPPOP, O. (2004) Migratory fuelling and global climate change, in: MOLLER, A., FIEDLER, W. & BERTHOLD, P. (Eds) Birds and climate change. Advances in Ecological Research 35: 33-47.CrossRefGoogle Scholar
BATES, B.C., KUNDZEWICZ, Z.W., WU, S. and PALUTIKOF, J.P. (2008) Climate change and water (Geneva, Switzerland, IPCC Secretariat).Google Scholar
BEER, J.V. (1963) The incidence of Aspergillus fumigatus in the throats of wild geese and gulls. Sabouraudia 2: 238-247.CrossRefGoogle Scholar
BERTHOLD, P. (2001) Bird migration: A general survey (Oxford, UK, Oxford University Press).CrossRefGoogle Scholar
BERTHOLD, P. (1999) Towards a comprehensive theory of the evolution, control and adaptability of avian migration. Ostrich 70: 1-11.CrossRefGoogle Scholar
BERTHOLD, P. (1996) Control of bird migration (London, U.K, Chapman and Hall).Google Scholar
BERTHOLD, P. (1990) Genetics of migration, in: GWINNER, E. (Ed.) Bird migration: The physiology and ecophysiology, pp. 429 (Berlin, Germany, Springer).Google Scholar
BLASKOVIC, D. and ERNEK, E. (1972) Birds as hosts of arboviruses in Europe, in: CHEREPANOV, I.A. (Ed.) Transcontinental connections of migratory birds and their role in the distribution of arboviruses., pp. 161-167 (Novosibirsk, Russia, Nauka).Google Scholar
BOLTE, L.A, MEURER, J. and KALETA, F.E. (1999) Avian host spectrum of avipoxviruses. Avian Pathology 28: 415-432.CrossRefGoogle ScholarPubMed
BOTH, C., BOUWHUIS, S., LESSELLS, C.M. and VISSER, M.E. (2006) Climate change and population declines in a long-distance migratory bird. Nature 441: 81-83.CrossRefGoogle Scholar
BOTZLER, R.G. (1991) Epizootiology of avian cholera in wildfowl. Journal of wildlife diseases 27: 367-395.CrossRefGoogle ScholarPubMed
BOWES, V.A. (2007) After the outbreak: How the British Columbia commercial poultry industry recovered after H7N3 HPAI. Avian Diseases 51: 313-316.CrossRefGoogle ScholarPubMed
BRINKERHOFF, R.J., FOLSOM-O'KEEFE, C.M., TSAO, K. and DIUK-WASSER, M.A. (2009) Do birds affect Lyme disease risk? Range expansion of the vector-borne pathogen Borrelia burgdorferi. Frontiers in Ecology and the Environment 9: 103-110.CrossRefGoogle Scholar
BROMMER, J.E. (2004) The range margins of northern birds shift polewards. Annales Zoologici Fennici 41: 391-397.Google Scholar
BURNS, T.E., RIBBLE, C., STEPHEN, C., KELTON, D., TOEWS, L., OSTERHOLD, J. and WHEELER, H. (2012) Use of observed wild bird activity on poultry farms and a literature review to target species as high priority for avian influenza testing in 2 regions of Canada. The Canadian Veterinary Journal 53: 158-166.Google Scholar
CAPUA, I. and ALEXANDER, D.J. (2009) Avian influenza infection in birds: A challenge and opportunity for the poultry veterinarian. Poultry Science 88: 842-846.CrossRefGoogle ScholarPubMed
CAZENAVE, A. and NEREM, R.S. (2004) Present-day sea level change: Observations and causes. Reviews of Geophysics 42: RG3001.CrossRefGoogle Scholar
CFIA, (2009) National avian on-farm biosecurity standard. Retrieved September 15th 2011 from: http://www.inspection.gc.ca/english/anima/biosec/aviafrme.shtml#farfer.Google Scholar
CHAMBERS, L.E., HUGHES, L. and WESTON, M.A. (2005) Climate change and its impact on Australia's avifauna. Emu 105: 1-20.CrossRefGoogle Scholar
CHARRON, D., WALTNER-TOEWS, D., MAAROUF, A. and STALKER, M. (2003) A synopsis of known and potential diseases and parasites of humans and animals associated with climate change. (Ontario, Canada, Ontario Ministry of Natural Resources).Google Scholar
CHEN, H., SMITH, G.J.D., LI, K.S., WANG, J., FAN, X.H., RAYNER, J.M., VIJAYKRISHNA, D., ZHANG, J.X., ZHANG, L.J., GUO, C.T., CHEUNG, C.L., XU, K.M., DUAN, L., HUANG, K., QIN, K., LEUNG, Y.H.C., WU, W.L., LU, H.R., CHEN, Y., XIA, N.S., NAIPOSPOS, T.S.P., YUEN, K.Y., HASSAN, S.S., BAHRI, S., NGUYEN, T.D., WEBSTER, R.G., PEIRIS, J.S.M. and GUAN, Y. (2006) Establishment of multiple sublineages of H5N1 influenza virus in Asia: Implications for pandemic control. Proceedings of the National Academy of Sciences of the United States of America 103: 2845-2850.CrossRefGoogle ScholarPubMed
CHEN, H., SMITH, G.J., ZANG, S.Y., QIN, K., WANG, J., LI, K.S., WEBSTER, R.G., PEIRIS, J.S.M. and GUAN, Y. (2005) Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 436: 191-192.CrossRefGoogle ScholarPubMed
CIZEK, A., LITERAK, I., HEJLICEK, K., TREML, F. and SMOLA, J. (1994) Salmonella contamination of the environment and its incidence in wild birds. 41: 320-327.Google Scholar
CRICK, H.Q.P. and SPARKS, T.H. (1999) Climate change related to egg-laying trends. Nature 399: 423-424.CrossRefGoogle Scholar
CUI, P., HOU, Y., XING, Z., HE, Y., LI, T., GUO, S., LUO, Z., YAN, B., YIN, Z. and LEI, F. (2011) Bird migration and risk for H5N1 transmission into Qinghai Lake, China. Vector-Borne and Zoonotic Diseases 11: 567-576.CrossRefGoogle Scholar
DAVIS, A.J., DOHERTY, P.F., GILBERT, .M., REESE, G.C., WILSON, K.R., FARNSWORTH, M.L., MILLER, R.S., FRANKLIN, A.B., MCLEAN, R.G., PIAGGIO, T.J., HOETING, J.A., MERTON, A.A. and WEBB, C.T. (2009) Avian influenza risk assessment for the United States: Modeling pathways of disease spread by wild birds (Colorado, USA, USDA National Wildlife Research Center) Retrieved on March 30th, 2012 from: http://www.aphis.usda.gov/wildlife_damage/nwrc/research/emerging_diseases/Avian%20Influenza%20Risk%20Assessment.pdf.Google Scholar
DE LA ROCQUE, S., RIOUX, J.A. and SLINGENBERGH, J. (2008) Climate change: Effects on animal disease systems and implications for surveillance and control. Revue scientifique et technique de l'Office international des épizooties 27: 339-354.Google ScholarPubMed
DOBSON, A. and FOUFOPOULOS, J. (2001) Emerging infectious pathogens of wildlife. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 356: 1001-1012.CrossRefGoogle ScholarPubMed
DOSWALD, N., WILLIS, S.G., COLLINGHAM, Y.C., PAIN, D.J., GREEN, R.E. and HUNTLEY, B. (2009) Potential impacts of climatic change on the breeding and non-breeding ranges and migration distance of European Sylvia warblers. Journal of Biogeography 36: 1194-1208.CrossRefGoogle Scholar
EPSTEIN, P.R. (2004) Climate change and public health: Emerging infectious diseases. Encyclopedia of Energy 1: 381-392.CrossRefGoogle Scholar
EPSTEIN, P.R. (2001) Climate change and emerging infectious diseases. Microbes and Infection 3: 747-754.CrossRefGoogle ScholarPubMed
FEARE, C.J. (2007) The role of wild birds in the spread of HPAI H5N1. Avian Diseases 51:440-447.CrossRefGoogle ScholarPubMed
FIGUEROLA, J., JIMÉNEZ-CLAVERO, M.A., ROJO, G., GÓMEZ-TEJEDOR, C. and SORIGUER, R. (2007) Prevalence of West Nile virus neutralizing antibodies in colonial aquatic birds in southern Spain. Avian Pathology 36: 209-212.CrossRefGoogle ScholarPubMed
FITZGERALD, D.M., FENSTER, M.S., ARGOW, B.A. and BUYNEVICH, I.V. (2008) Coastal impacts due to sea-level rise. Annual Review of Earth and Planetary Sciences 36: 601-647.CrossRefGoogle Scholar
FRANCIS, D. and HENGEVELD, H. (1998) Extreme weather and climate change (Ontario, Environment Canada).Google Scholar
FRIEND, M. and FRANSON, J.C. (1999a) Aspergillosis, in: Field Manual of Wildlife Diseases: General Field Procedures and Diseases of Birds, pp. 129-133 (Washington, DC, USA, Geological Survey, Biological Resource Division).Google Scholar
FRIEND, M. and FRANSON, J.C. (1999b) Avian Pox, in: Field Manual of Wildlife Diseases: General Field Procedures and Diseases of Birds, pp. 163-169 (Washington, DC, USA, Geological Survey, Biological Resource Division).Google Scholar
FRIEND, M., MCLEAN, R.G. and DEIN, F.J. (2001) Disease emergence in birds: Challenges for the twenty-first century. The Auk 118: 290-303.CrossRefGoogle Scholar
GALE, P., DREW, T., PHIPPS, L.P., DAVID, G. and WOOLDRIDGE, M. (2009) The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: A review. Journal of applied microbiology 106: 1409-1423.CrossRefGoogle ScholarPubMed
GILCHRIST, P. (2005) Involvement of free-flying wild birds in the spread of the viruses of avian influenza, Newcastle disease and infectious bursal disease from poultry products to commercial poultry. World's poultry science journal 61: 198-214.CrossRefGoogle Scholar
GLISSON, J.R., HOFACRE, C.L. and CHRISTENSEN, J.P. (2003) Fowl cholera, in: SAIF, Y.M., BARNES, H.J., GLISSON, J.R., FADLY, A.M., MCDOUGALD, L.R. & SWAYNE, D.E. (Eds) Diseases of Poultry, pp. 658-676 (Iowa, USA, Blackwell publishing Company).Google Scholar
GULKA, C.M., PIELA, T.H., YATES, V.J. and BAGSHAW, C. (1984) Evidence of exposure of waterfowl and other aquatic birds to the hemagglutinating duck adenovirus identical to EDS-76 virus. Journal of Wildlife Diseases 20: 1-5.CrossRefGoogle Scholar
HALL, A.J. and SAITO, E.K. (2008) Avian wildlife mortality events due to salmonellosis in the United States, 1985-2004. Journal of wildlife diseases 44: 585-593.CrossRefGoogle ScholarPubMed
HAMER, S., TSAO, J., WALKER, E. and HICKLING, G. (2010) Invasion of the Lyme disease vector Ixodes scapularis: Implications for Borrelia burgdorferi Endemicity. EcoHealth 7: 47-63.CrossRefGoogle ScholarPubMed
HANSEN, J., SATO, M., RUEDY, R., LO, K., LEA, D.W. and MEDINA-ELIZADE, M. (2006) Global temperature change. Proceedings of the National Academy of Sciences 103: 14288-14293.CrossRefGoogle ScholarPubMed
HARTUP, B.K., DHONDT, A.A., SYDENSTRICKER, K.V., HOCHACHKA, W.M. and KOLLIAS, G.V. (2001) Host range and dynamics of mycoplasmal conjunctivitis among birds in North America. Journal of wildlife diseases 37: 72-81.CrossRefGoogle ScholarPubMed
HARVELL, C.D., MITCHELL, C.E., WARD, J.R., ALTIZER, S., DOBSON, A.P., OSTFELD, R.S. and SAMUEL, M.D. (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296: 2158-2162.CrossRefGoogle ScholarPubMed
HARVELL, D., ALTIZER, S., CATTADORI, I.M., HARRINGTON, L. and WEIL, E. (2009) Climate change and wildlife diseases: When does the host matter the most? Ecology 90: 912-920.CrossRefGoogle ScholarPubMed
HESS, J.C. and PARÉ, J.A. (2004) Viruses of waterfowl. Seminars in Avian and Exotic Pet Medicine 13: 176-183.CrossRefGoogle Scholar
HICKLING, R., ROY, D.B., HILL, J.K., FOX, R. and THOMAS, C.D. (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12: 450-455.CrossRefGoogle Scholar
HINSHAW, V.S., WEBSTER, R.G. and TURNER, B. (1980) The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Canadian Journal of Microbiology 26: 622-629.CrossRefGoogle ScholarPubMed
HITCH, A.T. and LEBERG, P.L. (2007) Breeding distributions of north American bird species moving north as a result of climate change. Conservation Biology 21: 534-539.CrossRefGoogle Scholar
HLINAK, A., MÜHLE, R.U., WERNER, O., GLOBIG, A., STARICK, E., SCHIRRMEIER, H., HOFFMANN, B., ENGELHARDT, A., HÜBNER, D., CONRATHS, F.J., WALLSCHLÄGER, D., KRUCKENBERG, H. and MÜLLER, T. (2006) A virological survey in migrating waders and other waterfowl in one of the most important resting sites of Germany. Journal of Veterinary Medicine Series B 53: 105-110.CrossRefGoogle ScholarPubMed
HOCHACHKA, W.M. and DHONDT, A.A. (2000) Density-dependent decline of host abundance resulting from a new infectious disease. Proceedings of the National Academy of Sciences of the USA 97: 5303-5306.CrossRefGoogle ScholarPubMed
HORIMOTO, T. and KAWAOKA, Y. (2001) Pandemic threat posed by avian influenza A viruses. Clinical microbiology reviews 14: 129-149.CrossRefGoogle ScholarPubMed
HUBÁLEK, Z. (2004) An annotated checklist of pathogenic microorganisms associated with migratory birds. Journal of Wildlife Diseases 40: 639-659.CrossRefGoogle ScholarPubMed
HUDSON, C.R., QUIST, C., LEE, M.D., KEYES, K., DODSON, S.V., MORALES, C., SANCHEZ, S., WHITE, D.G. and MAURER, J.J. (2000) Genetic relatedness of salmonella isolates from nondomestic birds in southeastern United States. Journal of clinical microbiology 38: 1860-1865.CrossRefGoogle ScholarPubMed
HUNTER, P. (2003) Climate change and waterborne and vector-borne disease. Journal of applied microbiology 94: 37-46.CrossRefGoogle ScholarPubMed
ITO, K., KUBOKURA, Y., KANEKO, K., TOTAKE, Y. and OGAWA, M. (1988) Occurrence of Campylobacter jejuni in free-living wild birds from Japan. Journal of wildlife diseases 24: 467-470.CrossRefGoogle ScholarPubMed
JETTEN, T.H. and FOCKS, D.A. (1997) Potential changes in the distribution of Dengue transmission under climate warming. American Journal of Tropical Medicine and Hygiene 57: 285-297.CrossRefGoogle ScholarPubMed
JOHNSON, W.C., MILLETT, B.V., GILMANOV, T., VOLDSETH, R.A., GUNTENSPERGEN, G.R. and NAUGLE, D.E. (2005) Vulnerability of northern prairie wetlands to climate change. Bioscience 55: 863-872.CrossRefGoogle Scholar
JONES, K.E., PATEL, N.G., LEVY, M.A., STOREYGARD, A., BALK, D., GITTLEMAN, J.L. and DASZAK, P. (2008) Global trends in emerging infectious diseases. Nature 451: 990-993.CrossRefGoogle ScholarPubMed
JONES, M.P. and OROSZ, S.E. (2000) The diagnosis of aspergillosis in birds. Seminars in Avian and Exotic Pet Medicine 9: 52-58.CrossRefGoogle Scholar
JOURDAIN, E., GAUTHIER-CLERC, M., BICOUT, D.J. and SABATIER, P. (2007) Bird migration routes and risk for pathogen dispersion into western Mediterranean wetlands. Emerging Infectious Diseases 13: 365-372.CrossRefGoogle ScholarPubMed
KALETA, E.F., KHALAF, S.E. and SIEGMANN, O. (1980) Antibodies to egg-drop syndrome 76 virus in wild birds in possible conjunction with egg-shell problems. 9: 587-590.Google Scholar
KALETA, E.F. and BALDAUF, C. (1988) Newcastle disease in free-living and pet birds, in: ALEXANDER, D.J. (Ed.) Newcastle Disease, pp. 197-246 (Massachusetts, USA, Kluwer Academic Publishers).Google Scholar
KEAWCHAROEN, J., VAN RIEL, D., VAN AMERONGEN, G., BESTEBROER, T., BEYER, W., VAN LAVIEREN, R., OSTERHAUS, A.D., FOUCHIER, R.A. and KUIKEN, T. (2008) Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerging Infectious Diseases 14: 600-607.CrossRefGoogle ScholarPubMed
KIM, L.M., KING, D.J., CURRY, P.E., SUAREZ, D.L., SWAYNE, D.E., STALLKNECHT, D.E., SLEMONS, R.D., PEDERSEN, J.C., SENNE, D.A., WINKER, K. and AFONSO, C.L. (2007) Phylogenetic diversity among low virulence Newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to poultry-origin isolates. The Journal of Virology 81: 12641-12653.CrossRefGoogle ScholarPubMed
KINDE, H., HULLINGER, P.J., CHARLTON, B., MCFARLAND, M., HIETALA, S.K., VELEZ, V., CASE, J.T., GARBER, L., WAINWRIGHT, S.H., MIKOLON, A.B., BREITMEYER, R.E. and ARDANS, A.A. (2005) The isolation of Exotic Newcastle Disease (END) virus from nonpoultry avian species associated with the epidemic of END in Chickens in southern California: 2002-2003. Avian Diseases 49: 195-198.CrossRefGoogle ScholarPubMed
KRAUSS, S., WALKER, D., PRYOR, S.P., NILES, L., CHENGHONG, L., HINSHAW, V.S. and WEBSTER, R.G. (2004) Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne and Zoonotic Diseases 4: 177-189.CrossRefGoogle ScholarPubMed
KRAUSS, S., OBERT, C.A., FRANKS, J., WALKER, D., JONES, K., SEILER, P., NILES, L., PRYOR, S.P., OBENAUER, J.C., NAEVE, C.W., WIDJAJA, L., WEBBY, R.J. and WEBSTER, R.G. (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. Public Library of Science, Pathogens 3: 1684-1693.Google ScholarPubMed
LAFFERTY, K.D. (2009) The ecology of climate change and infectious diseases. Ecology 90: 888-900.CrossRefGoogle ScholarPubMed
LASLEY, F.A. (2003) Economics of avian influenza: Control vs noncontrol. Avian Diseases 47: 390-399.Google Scholar
LATORRE-MARGALEF, N., GUNNARSSON, G., MUNSTER, V.J., FOUCHIER, R.A.M., OSTERHAUS, A.D.M.E., ELMBERG, J., OLSEN, B., WALLENSTEN, A., HAEMIG, P.D., FRANSSON, T., BRUDIN, L. and WALDENSTRÖM, J. (2009) Effects of influenza A virus infection on migrating mallard ducks. Proceedings of the Royal Society B: Biological Sciences 276: 1029-1036.CrossRefGoogle ScholarPubMed
LEBARBENCHON, C., FEARE, C.J., RENAUD, F., THOMAS, F. and GAUTHIER-CLERC, M. (2010) Persistence of highly pathogenic avian influenza viruses in natural ecosystems. Emerging Infectious Diseases 6: 1057-1062.CrossRefGoogle Scholar
LEI, F., TANG, S., ZHAO, D., ZHANG, X., KOU, Z., LI, Y., ZHANG, Z., YIN, Z., CHEN, S., LI, S., ZHANG, D., YAN, B. and LI, T. (2007) Characterization of H5N1 influenza viruses isolated from migratory birds in Qinghai Province of China in 2006. Avian Diseases 51: 568-572.CrossRefGoogle ScholarPubMed
LIU, H., WANG, Z., WANG, Y., SUN, C., ZHENG, D. and WU, Y. (2008) Characterization of Newcastle disease virus isolated from waterfowl in China. Avian Diseases 52: 150-155.CrossRefGoogle ScholarPubMed
LIU, X., WANG, X., WU, S., HU, S., PENG, Y., XUE, F. and LIU, X. (2009) Surveillance for avirulent Newcastle disease viruses in domestic ducks (Anas platyrhynchos and Cairina moschata) at live bird markets in eastern China and characterization of the viruses isolated. Avian Pathology 38: 377-391.CrossRefGoogle ScholarPubMed
LUECHTEFELD, N.A., BLASER, M.J., RELLER, L.B. and WANG, W.L. (1980) Isolation of Campylobacter fetus subsp. jejuni from migratory waterfowl. Journal of clinical microbiology 12: 406-408.CrossRefGoogle ScholarPubMed
MALDONADO, A., ARENAS, A., TARRADAS, M., LUQUE, I., ASTORGA, R., PEREA, J. and MIRANDA, A. (1995) Serological survey for avian paramyxoviruses from wildfowl in aquatic habitats in Andalusia. Journal of wildlife diseases 31: 66-69.CrossRefGoogle ScholarPubMed
MALKINSON, M., BANET, C., WEISMAN, Y., POKAMUNSKI, S., KING, R., DROUET, M.T. and DEUBEL, V. (2002) Introduction of West Nile virus in the Middle East by migrating white storks. Emerging Infectious Diseases 8: 392-397.CrossRefGoogle ScholarPubMed
MALKINSON, M. and WEISMAN, Y. (1980) Serological survey for the prevalence of antibodies to egg drop syndrome 1976 virus in domesticated and wild birds in Israel. Avian Pathology 9: 421-426.CrossRefGoogle ScholarPubMed
MARTIN, J., FRENCH, K. and MAJOR, R. (2010) Population and breeding trends of an urban coloniser: The Australian white ibis. Wildlife Research 37: 230-239.CrossRefGoogle Scholar
MCFERRAN, J.B. and ADAIR, R.M. (2003) Egg drop syndrome, in: SAIF, Y.M., BARNES, H.J., GLISSON, J.R., FADLY, A.M., MCDOUGALD, L.R. & SWAYNE, D.E. (Eds) Diseases of Poultry, pp. 227-237 (Iowa, USA, Iowa State University Press).Google Scholar
MCMICHAEL, A.J., WOODRUFF, R.E. and HALES, S. (2006) Climate change and human health: Present and future risks. The Lancet 367: 859-869.CrossRefGoogle ScholarPubMed
MICHENER, W.K., BLOOD, E.R., BILDSTEIN, K.L., BRINSON, M.M. and GARDNER, L.R. (1997) Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications 7: 770-801.CrossRefGoogle Scholar
MILLS, J.N., GAGE, K.L. and KHAN, A.S. (2010) Potential influence of climate change on vector-borne and zoonotic diseases: A review and proposed research plan. Environmental Health Perspectives 118: 1507-1514.CrossRefGoogle ScholarPubMed
MØLLER, A.P. and SZÉP, T. (2011) The role of parasites in ecology and evolution of migration and migratory connectivity. Journal of Ornithology 152: 141-150.CrossRefGoogle Scholar
MORIN, C.W. and COMRIE, A. (2010) Modeled response of the West Nile virus vector Culex quinquefasciatus to changing climate using the dynamic mosquito simulation model. International Journal of Biometeorology 54: 517-529.CrossRefGoogle ScholarPubMed
MURKIN, H.R., MURKIN, E.J. and BALL, J.P. (1997) Avian habitat selection and prairie wetland dynamics: A 10-year experiment. Ecological Applications 7: 1144-1159.CrossRefGoogle Scholar
NEBEL, S., MILLS, A., MCCRACKEN, J.D. and TAYLOR, P.D. (2010) Declines of aerial insectivores in North America follow a geographic gradient. Avian Conservation and Ecology - Écologie et conservation des oiseaux [online] URL: http://www.ace-eco.org/vol5/iss2/art1/.CrossRefGoogle Scholar
NORMILE, D. (2006) Avian influenza: Evidence points to migratory birds in H5N1 spread. Science 311: 1225.CrossRefGoogle ScholarPubMed
OGDEN, N.H., LINDSAY, L.R., HANINCOVA, K., BARKER, I.K., BIGRAS-POULIN, M., CHARRON, D.F., HEAGY, A., FRANCIS, C.M., O'CALLAGHAN, C.J., SCHWARTZ, I. and THOMPSON, R.A. (2008) Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Applied and Environmental Microbiology 74: 1780-1790.CrossRefGoogle ScholarPubMed
OGDEN, N.H., BOUCHARD, C., KURTENBACH, K., MARGOS, G., LINDSAY, L.R., TRUDEL, L., NGUON, S. and MILORD, F. (2010) Active and passive surveillance and phylogenetic analysis of Borrelia burgdorferi elucidate the process of Lyme disease risk emergence in Canada. Environmental Health Perspectives 118: 909-914.CrossRefGoogle ScholarPubMed
OGDEN, N.H., MAAROUF, A., BARKER, I.K., BIGRAS-POULIN, M., LINDSAY, L.R., MORSHED, M.G., O'CALLAGHAN, C.J., RAMAY, F., WALTNER-TOEWS, D. and CHARRON, D.F. (2006) Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. International journal for parasitology 36: 63-70.CrossRefGoogle ScholarPubMed
OLSEN, B., MUNSTER, V.J., WALLENSTEN, A., WALDENSTROM, J., OSTERHAUS, A.D. and FOUCHIER, R.A. (2006) Global patterns of influenza A virus in wild birds. Science 312: 384-388.CrossRefGoogle ScholarPubMed
OLSEN, G.H. (2009) Bacterial and parasitic diseases of Anseriformes. Veterinary Clinics of North America: Exotic Animal Practice 12: 475-490.Google ScholarPubMed
OSTFELD, R.S., GLASS, G.E. and KEESING, F. (2005) Spatial epidemiology: An emerging (or re-emerging) discipline. Trends in Ecology & Evolution 20: 328-336.CrossRefGoogle ScholarPubMed
OSTFELD, R.S. and KEESING, F. (2000) Biodiversity and disease risk: The case of Lyme disease. Conservation Biology 14: 722-728.CrossRefGoogle Scholar
OWEN, J., MOORE, F., PANELLA, N., EDWARDS, E., BRU, R., HUGHES, M. and KOMAR, N. (2006) Migrating birds as dispersal vehicles for West Nile virus. EcoHealth 3: 79-85.CrossRefGoogle Scholar
PACHA, R.E., CLARK, G.W., WILLIAMS, E.A. and CARTER, A.M. (1988) Migratory birds of central Washington as reservoirs of Campylobacter jejuni. Canadian Journal of Microbiology 34: 80-82.CrossRefGoogle Scholar
PALMGREN, H., SELLIN, M., BERGSTROM, S. and OLSEN, B. (1997) Enteropathogenic bacteria in migrating birds arriving in Sweden. Scandinavian Journal of Infectious Diseases 29: 565-568.CrossRefGoogle ScholarPubMed
PARMESAN, C. and YOHE, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37-42.CrossRefGoogle ScholarPubMed
PROSSER, D.J., CUI, P., TAKEKAWA, J.Y., TANG, M., HOU, Y., COLLINS, B.M., YAN, B., HILL, N.J., LI, T., LI, Y., LEI, F., GUO, S., XING, Z., HE, Y., ZHOU, Y., DOUGLAS, D.C., PERRY, W.M. and NEWMAN, S.H. (2011) Wild bird migration across the Qinghai-Tibetan Plateau: A transmission route for highly pathogenic H5N1. PLoS ONE 6: e17622.CrossRefGoogle Scholar
PETERSON, A.T., BENZ, B.W. and PAPES, M. (2007) Highly pathogenic H5N1 avian influenza: Entry pathways into North America via bird migration. PLoS One 2: e261.CrossRefGoogle ScholarPubMed
PULIDO, F. (2007) The genetics and evolution of avian migration. Bioscience 57: 165-174.CrossRefGoogle Scholar
RAPPOLE, J.H., DERRICKSON, S.R. and HUBALEK, Z. (2000) Migratory birds and spread of West Nile virus in the western hemisphere. Emerging Infectious Diseases 6: 319-328.CrossRefGoogle ScholarPubMed
REDIG, P.T. (1993) Avian aspergillosis, in: Zoo and wild animal medicine: current therapy, pp. 178-181 (Pennsylvania, USA, W. B. Saunders Co.).Google Scholar
REED, K.D., MEECE, J.K., HENKEL, J.S. and SHUKLA, S.K. (2003) Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clinical Medicine & Research 1: 5-12.CrossRefGoogle ScholarPubMed
REISEN, W.K. (2010) Landscape epidemiology of vector-borne diseases. Annual Review of Entomology 55: 461-483.CrossRefGoogle ScholarPubMed
RITCHIE, B.W. (1995) Avian viruses: Function and control (Florida, USA, Winger's Publishing).Google Scholar
ROHR, J.R., DOBSON, A.P., JOHNSON, P.T.J., KILPATRICK, A.M., PAULL, S.H., RAFFEL, T.R., RUIZ-MORENO, D. and THOMAS, M.B. (2011) Frontiers in climate change-disease research. Trends in Ecology & Evolution 26: 270-277.CrossRefGoogle Scholar
ROSENTHAL, J. (2009) Climate change and the geographic distribution of infectious diseases. EcoHealth 6: 489-495.CrossRefGoogle ScholarPubMed
ROY, P., VENUGOPALAN, A.T., SELVARANGAM, R. and RAMASWAMY, V. (1998) Velogenic Newcastle disease virus in captive wild birds. Tropical Animal Health and Production 30: 299-303.CrossRefGoogle ScholarPubMed
SAMUEL, M.D., SHADDUCK, D.J., GOLDBERG, D.R. and JOHNSON, W.P. (2005) Avian cholera in waterfowl: The role of lesser snow and Ross's geese as disease carriers in the Playa Lakes Region. Journal of wildlife diseases 41: 48-57.CrossRefGoogle ScholarPubMed
SAMUEL, M., SHADDUCK, D., GOLDBERG, D., BARANYUK, V., SILEO, L. and PRICE, J. (1999) Antibodies against Pasteurella multocida in snow geese in the western Arctic. Journal of wildlife diseases 35: 440-449.CrossRefGoogle ScholarPubMed
SCHLOER, G.M. (1980) Frequency of antibody to adenovirus 127 in Domestic Ducks and Wild Waterfowl. Avian Diseases 24: 91-98.CrossRefGoogle Scholar
SCOTT, D., MALCOLM, J.R. and LEMIEUX, C. (2002) Climate change and modeled biome representation in Canada's national park system: Implications for system planning and park mandates. Global Ecology & Biogeography 11: 475-484.CrossRefGoogle Scholar
SEHGAL, R.N.M. (2010) Deforestation and avian infectious diseases. Journal of Experimental Biology 213: 955-960.CrossRefGoogle ScholarPubMed
SORENSON, L.G., GOLDBERG, R., ROOT, T.L. and ANDERSON, M.G. (1998) Potential effects of global warming on waterfowl populations breeding in the northern Great Plains. Climatic Change 40: 343-369.CrossRefGoogle Scholar
STALLKNECHT, D.E. and SHANE, S.M. (1988) Host range of avian influenza virus in free-living birds. Veterinary research communications 12: 125-141.CrossRefGoogle ScholarPubMed
STENSETH, N.C. and MYSTERUD, A. (2002) Climate, changing phenology, and other life history traits: Nonlinearity and match-mismatch to the environment. Proceedings of the National Academy of Sciences of the United States of America 99: 13379-13381.CrossRefGoogle ScholarPubMed
STRONG, L.L., GILMER, D.S. and BRASS, J.A. (1991) Inventory of wintering geese with a multispectral scanner. The Journal of Wildlife Management 55: 250-259.CrossRefGoogle Scholar
STURM-RAMIREZ, K.M., HULSE-POST, D.J., GOVORKOVA, E.A., HUMBERD, J., SEILER, P., PUTHAVATHANA, P., BURANATHAI, C., NGUYEN, T.D., CHAISINGH, A., LONG, H.T., NAIPOSPOS, T.S.P., CHEN, H., ELLIS, T.M., GUAN, Y., PEIRIS, J.S.M. and WEBSTER, R.G. (2005) Are ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus in Asia?. The Journal of Virology 79: 11269-11279.CrossRefGoogle Scholar
THOMAS, N.J., HUNTER, D.B. and ATKINSON, C.T. (2007) Infectious diseases of wild birds (Oxford, UK, Wiley-Blackwell).CrossRefGoogle Scholar
THOMAS, C.D. and LENNON, J.J. (1999) Birds extend their ranges northwards. Nature 399: 213-213.CrossRefGoogle Scholar
TIZARD, I. (2004) Salmonellosis in wild birds. Seminars in Avian and Exotic Pet Medicine 13: 50-66.CrossRefGoogle Scholar
TSIODRAS, S., KELESIDIS, T., KELESIDIS, I., BAUCHINGER, U. and FALAGAS, M.E. (2008) Human infections associated with wild birds. Journal of Infection 56: 83-98.CrossRefGoogle ScholarPubMed
VAN GILS, J.A., MUNSTER, V.J., RADERSMA, R., LIEFHEBBER, D., FOUCHIER, R.A.M. and KLAASSEN, M. (2007) Hampered foraging and migratory performance in swans infected with low-pathogenic avian influenza A Virus. Public Library of Science, ONE 2: e184.Google ScholarPubMed
VANDEGRIFT, K.J., SOKOLOW, S.H., DASZAK, P. and KILPATRICK, A.M. (2010) Ecology of avian influenza viruses in a changing world. Annals of the New York Academy of Sciences 1195: 113-128.CrossRefGoogle Scholar
VARDE, S., BECKLEY, J. and SCHWARTZ, I. (1998) Prevalence of tick-borne pathogens in Ixodes scapularis in a rural New Jersey County. Emerging Infectious Diseases 4: 97-99.CrossRefGoogle Scholar
VÉGVÁRI, Z., BÓKONY, V., BARTA, Z. and KOVÁCS, G. (2010) Life history predicts advancement of avian spring migration in response to climate change. Global Change Biology 16: 1-11.CrossRefGoogle Scholar
VICKERS, M.L. and HANSON, R.P. (1982) Newcastle disease virus in waterfowl in Wisconsin. Journal of Wildlife Diseases 18: 149-158.CrossRefGoogle ScholarPubMed
VISSER, M.E., PERDECK, A.C., VAN BALEN, J.H. and BOTH, C. (2009) Climate change leads to decreasing bird migration distances. Global Change Biology 15: 1859-1865.CrossRefGoogle Scholar
VOSE, R.S., EASTERLING, D.R. and GLEASON, B. (2005) Maximum and minimum temperature trends for the globe: An update through 2004. Geophysical Research Letters 32: L23822.CrossRefGoogle Scholar
WALDENSTRӦM, J., BROMAN, T., CARLSSON, I., HASSELQUIST, D., ACHTERBERG, R.P., WAGENARR, J.A. and OLSEN, B. (2002) Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Applied and Environmental Microbiology 68: 5911-5917.CrossRefGoogle Scholar
WALTHER, G.R., POST, E., CONVEY, P., MENZEL, A., PARMESAN, C., BEEBEE, T.J.C., FROMENTIN, J.M., HOEGH-GULDBERG, O. and BAIRLEIN, F. (2002) Ecological responses to recent climate change. Nature 416: 389-395.CrossRefGoogle ScholarPubMed
WARD, M.P., MAFTEI, D.N., APOSTU, C.L. and SURU, A.R. (2009) Association between outbreaks of highly pathogenic avian influenza subtype H5N1 and migratory waterfowl (family Anatidae) populations. Zoonoses Public Health 56: 1-9.CrossRefGoogle ScholarPubMed
WATTS, E.J., PALMER, S.C., BOWMAN, A.S., IRVINE, R.J., SMITH, A. and TRAVIS, J.M. (2009) The effect of host movement on viral transmission dynamics in a vector-borne disease system. Parasitology 136: 1221-1234.CrossRefGoogle Scholar
WEBB, E.B., SMITH, L.M., VRTISKA, M.P. and LAGRANGE, T.G. (2010) Effects of local and landscape variables on wetland bird habitat use during migration through the rainwater basin. Journal of Wildlife Management 74: 109-119.CrossRefGoogle Scholar
WEBSTER, R.G., BEAN, W.J., GORMAN, O.T., CHAMBERS, T.M. and KAWAOKA, Y. (1992) Evolution and ecology of influenza A viruses. Microbiology and molecular biology reviews 56: 152-179.Google ScholarPubMed
WENTZ, F.J., RICCIARDULLI, L., HILBURN, K. and MEARS, C. (2007) How much more rain will global warming bring? Science 317: 233-235.CrossRefGoogle ScholarPubMed
WINKER, K., MCCRACKEN, K.G., GIBSON, D.D., PRUETT, C.L., MEIER, R., HUETTMANN, F., WEGE, M., KULIKOVA, I.V., ZHURAVLEV, Y.N., PERDUE, M.L., SPACKMAN, E., SUAREZ, D.L. and SWAYNE, D.E. (2007) Movements of birds and avian influenza from Asia into Alaska. Emerging Infectious Diseases 13: 547-552.CrossRefGoogle ScholarPubMed
WINKLER, D.W., DUNN, P.O. and MCCULLOCH, C.E. (2002) Predicting the effects of climate change on avian life-history traits. Proceedings of the National Academy of Sciences of the United States of America 99: 13595-13599.CrossRefGoogle ScholarPubMed
WOBESER, G.A. (1997) Diseases of wild waterfowl (New York, USA, Plenum Press).CrossRefGoogle Scholar
WOBESER, G. (1992) Avian cholera and waterfowl biology. Journal of Wildlife Diseases 28: 674-682.CrossRefGoogle ScholarPubMed
WOBESER, G., LEIGHTON, F.A., NORMAN, R., MYERS, D.J., ONDERKA, D., PYBUS, M.J., NEUFELD, J.L., FOX, G.A. and ALEXANDER, D.J. (1993) Newcastle disease in wild water birds in western Canada, 1990. Canadian Veterinary Journal 34: 353-359.Google ScholarPubMed
YEE, K.S., CARPENTER, T.E. and CARDONA, C.J. (2009) Epidemiology of H5N1 avian influenza. Comparative immunology, microbiology and infectious diseases 32: 325-340.CrossRefGoogle ScholarPubMed