Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T07:43:05.743Z Has data issue: false hasContentIssue false

Chicken heterophils: a model for non-oxidative antimicrobial activity

Published online by Cambridge University Press:  23 December 2009

O. BENNOUNE*
Affiliation:
Laboratory of health, animal production and environment (ESPA), Department of Veterinary Medicine, Faculty of Science, University of Batna, Algeria
M. MELIZI
Affiliation:
Laboratory of health, animal production and environment (ESPA), Department of Veterinary Medicine, Faculty of Science, University of Batna, Algeria
K. KHAZAL
Affiliation:
School of veterinary medicine, Tuskegee University, Tuskegee Alabama, AL 36088, USA
R. BOUROUBA
Affiliation:
Department of Biology, Faculty of Science, University of Batna, Algeria
A. AYACHI
Affiliation:
Laboratory of health, animal production and environment (ESPA), Department of Veterinary Medicine, Faculty of Science, University of Batna, Algeria
*
Corresponding author: [email protected]
Get access

Abstract

Chicken heterophils are major components of the innate immune system and constitute the first guard of defence against invading microorganisms. Heterophils in contrast to mammalian neutrophils, lack myeloperoxidase, an essential enzyme of oxidative antimicrobial activity and their antimicrobial activity depends mainly on the non–oxidative mechanism. Heterophils are equipped with very efficient non–oxidative mechanism against microorganisms where the cationic antimicrobial peptides are the most powerful molecules of this killing activity with their broad spectrum activity and the ability to kill microorganisms even with very small concentrations may constitute a new antibiotic class and the basis for new feed additives. These polymorphonuclar cells are the best model for killing activity based on oxygen independent mechanisms. Disorders in the non-oxidative antimicrobial activity induced either by genetic mutations or immunomodulation diseases have direct effect on the killing capacity of heterophils. This review focuses on the heterophils main activity, cationic antimicrobial peptides isolated from chicken heterophils with their remarkable antimicrobial activity and the protective effect of heterophils in different states.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BEFUS, A.D., MOWAT, C., GILCHRIST, M., HU, J., SOLOMON, S. and BATEMAN, A. (1999) Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. The Journal of Immunology 163: 947-953.CrossRefGoogle ScholarPubMed
BIGGAR, D. and STURGESS, J. (1978) Hydrogen peroxide release by rat alveolar macrophages: comparison with blood neutrophils. Infection and Immunity 19(2): 621-629.CrossRefGoogle ScholarPubMed
BRUNE, K. and SPITZNAGEL, J.K. (1973) Peroxidaseless chicken leukocytes: isolation and characterization of antibacterial granules. The Journal of Infectious Diseases 127(1): 84-94.CrossRefGoogle ScholarPubMed
BRUNE, K., LEFFELL, M.S. and SPITZNAGEL, J.K. (1972) Microbicidal activity of peroxidaseless chicken heterophile leukocytes. Infection and Immunity 5: 283-287.CrossRefGoogle ScholarPubMed
CONLON, P., SMITH, D. and GOWLETT, T. (1991) Oxygen radical production by avian leukocytes. Canadian Journal of Veterinary Research 55: 193-195Google ScholarPubMed
EVANS, E.W., BEACH, F.G., MOORE, K.M., JACKWOOD, M.W., GLISSON, J.R. and HARMON, B.G. (1995) Antimicrobial activity of chicken and turkey heterophil peptides CHP1, CHP2, and CHP3. Veterinary Microbiology 47: 295-303.CrossRefGoogle Scholar
EVANS, E.W., BEACH, G.G., WUNDERLICH, J. and HARMON, G.B. (1994) Isolation of antimicrobial peptides from avian heterophils. Journal of Leukocyte Biology 56: 661-665.CrossRefGoogle ScholarPubMed
GOUGH, M., HANCOCK, R.E. and KELLY, N.M. (1996) Antiendotoxin activity of cationic peptide antimicrobial agents. Infection and Immunity 64(12): 4922-4927.CrossRefGoogle ScholarPubMed
GUDMUNDSSON, G.H. and AGERBERTH, B. (1999) Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. Journal of Immunological Methods 232: 45-54.CrossRefGoogle ScholarPubMed
HANCOCK, R.E. and CHAPPLE, D.S. (1999) Peptide antibiotics. Antimicrobial Agents and Chemotherapy 43(6): 1317-1323.CrossRefGoogle ScholarPubMed
HANCOCK, R.E.W. (1997) Peptide antibiotics. The Lancet 349(9049): 418-422.CrossRefGoogle ScholarPubMed
HANCOCK, R.E.W. and DIAMOND, G. (2000) The role of cationic antimicrobial peptides in innate host defences. Trends in Microbiology 8(9): 402-410.CrossRefGoogle ScholarPubMed
HANCOCK, R.E.W. and SCOTT, M.G. (2000) The role of antimicrobial peptides in animal denfenses. Proceedings of the National Academy of Sciences of the United States of America 97(16): 8856-8861.CrossRefGoogle Scholar
HARMON, B.G. (1998) Avian heterophils in inflammation and disease resistance. Poultry Science 77: 972-977.CrossRefGoogle ScholarPubMed
HARMON, B.G., GLISSON, J.R. and NUNALLY, J.C. (1992) Turkey macrophage and heterophil bactericidal activity against Pasteurella multocida. Avian Diseases 36: 986-991.CrossRefGoogle ScholarPubMed
HARWIG, S.S.L., SWIDEREK, K.M., KOKRYAKOV, V.N., TAN, L., LEE, T.D., PANYUTICHA, E.A., ALESHINA, G.M., SHAMOVA, O.V. and LEHRER, R.I. (1994) Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Letters 342: 821-285.CrossRefGoogle ScholarPubMed
HELMERHORST, E.J., REIJNDERS, I.M., HOF, M., VEERMAN, E.C.I. and AMERONGEN, A.V.N. (1999) A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Letters 449: 105-110.CrossRefGoogle ScholarPubMed
HIGAZI, A.A-R., LAVI, E., BDEIR, K., ULRICH, A.M., JAMIESON, D.G., RADER, , D, J., USHER, D.C., KANE, W., GANZ, T. and CINES D.B., (1997) Defensin stimulates the binding of lipoprotein (a) to human vascular endothelial and smooth muscle cells. Blood 89(12): 4290-4298.CrossRefGoogle ScholarPubMed
HIRABAYASHI, Y., TANIUCHI, S. and KOBAYASHI, Y. (1985) A quantitative assay of oxidative metabolism by neutrophils in whole blood using flow cytometry. Journal of Immunological Methods 82: 253-259.CrossRefGoogle ScholarPubMed
HODINKA, R.L. and MODRZAKOWSKI, M.C. (1983) Bactericidal activity of granule contents from rat polymorphonuclear leukocytes. Infection and Immunity 40(1): 139-146.CrossRefGoogle ScholarPubMed
HOFFMAN, J.A., KAFATOS, F.C., JANEWAY, C.A. JR and EZEKOWITZ, R.A.B. (1999) Phylogenetic perspectives in innate immunity. Science 284: 1313-1318.CrossRefGoogle Scholar
HUTTNER, K.M. and BEVINS, C.L. (1999) Antimicrobial peptides as mediators of epithelial host defense. Pediatric Research 45(6): 785-794CrossRefGoogle ScholarPubMed
INGHAM, H.R., SISSON, P.R., MIDDLETON, R.L., NARANG, H.K., CODD, A.A. and SELKON, J.B. (1981) Phagocytosis and killing of bacteria in aerobic and anaerobic conditions. Journal of Medical Microbiology 14: 391-399.CrossRefGoogle ScholarPubMed
JIANG, Y.W., SIMS, M.D. and CONWAY, D.P. (2005) The efficacy of TAMUS 2032 in preventing a natural outbreak of colibacillosis in broiler chickens in floor pens. Poultry science 84(12): 1857-1859.CrossRefGoogle ScholarPubMed
KOGUT, M.H., GENOVESE, K.J., HE, H., LI, M.A. and JIANG, Y.W. (2007) The effects of the bt/tamus 2032 cationic peptides on innate immunity and susceptibility of young chickens to extraintestinal salmonella enterica serovar enteritidis infection. International Immunopharmacology 7: 912-919.CrossRefGoogle Scholar
KOGUT, M.H., MCGRUDER, E.D., HARGIS, B.M., CORRIER, D.E. and DELOACH, J.R. (1994) Dynamics of the avian inflammatory response to Salmonella- immune lyphokines. Changes in avian blood leukocyte populations. Inflammation 18: 373-388.CrossRefGoogle ScholarPubMed
KOGUT, M.H., MCGRUDER, E.D., HARGIS, B.M., CORRIER, D.E. and DELOACH, J.R. (1995) Characterization of the pattern of inflammatory cell influx in chicks following the intraperitoneal administration of live Salmonella enteritidis and Salmonella enteritidis-immune lymphokines. Poultry Science 74: 8-17CrossRefGoogle ScholarPubMed
KOURIE, J.I. and SHORTHOUSE, A.A. (2000) Properties of cytotoxic peptide-formed ion channels. American Journal of Physiology - Cell Physiology 278: C1063-C1087.CrossRefGoogle ScholarPubMed
LEHRER, I.R., BARTON, A., DAHER, , K, A., HARWIG, S.S.L., GANZ, T. and SELSTED, M.E. (1989) Interaction of human defensins with Escherichia coli. mechanism of bactericidal. Journal of Clinical Investigation 84: 553-561.CrossRefGoogle ScholarPubMed
MACRAE, E.K. and SPITZNAGEL, J.K. (1975) Ultrastructural localization of cationic proteins in cytoplasmic granules of chicken and rabbit polymorphonuclear leukocytes. Journal of Cell Science 17: 79-94.CrossRefGoogle ScholarPubMed
MANDELL, G.L. (1974) Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infection and Immunity 9(2): 337-341.CrossRefGoogle ScholarPubMed
MILONA, P., TOWNES, C.L., BEVAN, R.M. and HALL, J. (2007) The chicken host peptides, gallinacins 4, 7, and 9 have antimicrobial activity against Salmonella serovars. Biochemical and Biophysical Research Communications 356: 169-174.CrossRefGoogle Scholar
NAGAHATA, H., YATSU, A. and NODA, H. (1986) The evaluation of a quantitative assay for estimating the bactericidal activity of bovine neutrophils by nitroblue tetrazolium reduction. British Veterinary Journal 142: 578-584.CrossRefGoogle ScholarPubMed
NAMAVAR, F., VERWEIJ-VAN VUGHT, A.M.J.J., VEL, W.A.C., BAL, M. and MACLAREN, D.M. (1984) Polymorphonuclear leukocyte chemotaxis by mixed anaerobic and aerobic bacteria. Journal of Medical Microbiology 18: 167-172.CrossRefGoogle ScholarPubMed
ODEBERG, H. and OLSSON, I. (1975) . Antibacterial activity of cationic proteins from human granulocytes. Journal of Clinical Investigation 56: 1118-1124.CrossRefGoogle ScholarPubMed
PENNIALL, R. and SPITZNAGEL, J. K. (1975) Chicken neutrophils: oxidative metabolism in phagocytic cells devoid of myeloperoxidase. Proceedings of the National Academy of Sciences of the United States of America 72: 5012-5015.CrossRefGoogle ScholarPubMed
SCOTT, M., VREUGDENHIL, A.C.E., BUURMAN, W.A., HANCOCK, R.E.W. and GOLD, M.R. (2000) Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. The Journal of Immunology 164: 549-553.CrossRefGoogle Scholar
STYRT, B. (1989) Species variation in neutrophil biochemistry and function. Journal of Leukocyte Biology 46: 63-74.CrossRefGoogle ScholarPubMed
VAN DIJK, A., TERSTEEG-ZIJDERVELD, M.H.G., TJEERDSMA-VAN BOKHOVEN, J.L.M., JANSMAN, A.J.M., VELDHUIZEN, E.J.A. and HAAGSMAN, H.P. (2009) Chicken heterophils are recruited to the site of Salmonella infection and release antibacterial mature cathelicidin-2 upon stimulation with LPS. Molecular Immunology 46: 1517-1526.CrossRefGoogle Scholar
VEL, W.A.C., NAMAVAR, F., WERWEIJ, A.M.J., PUBBEN, A.N.B. and MACLAREN, D.M. (1984) Killing capacity of human polymorphonucler leukocytes in aerobic and anaerobic conditions. Journal of Medical Microbiology 18: 173-180.CrossRefGoogle Scholar
WEISS, J., ELSBACH, P., OLSSON, I. and ODELBERG, H. (1978) Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. The Journal of Biological Chemistry 253(8): 2664-2672.CrossRefGoogle ScholarPubMed
ZEYA, H.I. and SPITZNAGEL, J.K. (1966a) Cationic proteins of polymorphonuclear leukocyte lysosomes. I- Resolution of antibacterial and enzymatic activities. Journal of Bacteriology 91(2): 750-754.CrossRefGoogle ScholarPubMed
ZEYA, H.I. and SPITZNAGEL, J.K. (1966b) Cationic proteins of polymorphonuclear leukocyte lysosomes. II- Composition, properties, and mechanism of antibacterial action. Journal of Bacteriology 91(2): 755-762.CrossRefGoogle ScholarPubMed
ZHANG, H., PORRO, G., ORZECH, N., MULLEN, B., LIU, M. and SLUTSKY, S. (2001) Neutrophil defensins mediate acute inflammatory response and lung dysfunction in dose-related fashion. The American Journal of Physiology - Lung Cellular and Molecular Physiology 280: L947-L954.CrossRefGoogle ScholarPubMed
ZHAO, C., NGUYEN, T., LIU, L., SACCO, R.E., BROGDEN, K.A. and LEHRER, R.I. (2001) Gallinacin-3, an inducible epithelial β-defensin in the chicken. Infection and Immunity 69(4): 2684-2691.CrossRefGoogle ScholarPubMed