Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T19:37:03.539Z Has data issue: false hasContentIssue false

Exploitation of the nonlinearities in electromagnetic energy harvesting and passive UHF RFID

Published online by Cambridge University Press:  22 February 2016

Gianfranco Andia-Vera*
Affiliation:
University of Grenoble, Alpes, LCIS, 50 rue Barthélémy de Laffemas, 26902 Valence, France. Phone: +33 475 759 442
Shankar Nawale
Affiliation:
Sinhgad Engineering Institute, 19-15, Smt Khilare Marg, Off Karve Road, Erandwane, Pune, India
Yvan Duroc
Affiliation:
Ampere Laboratory, Lyon University, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
Smail Tedjini
Affiliation:
University of Grenoble, Alpes, LCIS, 50 rue Barthélémy de Laffemas, 26902 Valence, France. Phone: +33 475 759 442
*
Corresponding author: G. Andia-Vera Email: [email protected]
Get access

Abstract

In this paper, some theoretical aspects and experimental results are discussed with the aim to provide supplementary dc energy to radio frequency identification (RFID) tags by exploiting the nonlinear nature of rectifier devices. Three nonlinear phenomena are treated: (i) the impedance power dependence, (ii) the harmonic production, and (iii) the dependence on the radio frequency waveform. The novelty of the work relies on proposing a double rectifier composite system in where the nonlinearity of each rectifier is exploited to enhance the global powering performance of the system. Using the passive RFID technology as a beacon for the implementation, the approach considers combining the internal rectifier circuit of a commercial RFID chip operating at 868 MHz with an external rectifier circuit operating at 2.17 GHz. The solution triggers in a composite system RFID tag-harvester integrated in a single-feed dual-band antenna. The experimental validation shows 5 dB of tag sensitivity enhancement when it is empowered by the external harvester. The enhanced sensitivity produces an increase in the theoretical reading range distance from 3.3 to 6.1 m.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Duroc, Y.; Kaddour, D.: RFID potential impacts and future evolution for green projects. Energy Procedia, 18 (2012), 9198.CrossRefGoogle Scholar
[2]De Koomey, J.G.; Berard, S.; Sanchez, M.; Wong, H.: Implications of historical trends in the electrical efficiency of computing. IEEE Ann. Hist. Comput., 33 (3) (2011), 4654.Google Scholar
[3]Impinj. Monza R6 RFID Tag Chip. Optimized for Retail Environments. [Online]. Available: http://www.impinj.com/products/tag-chips/monza-r6/=0ptGoogle Scholar
[4]De Donno, D.; Catarinucci, L.; Tarricone, L.: A battery-assisted sensor-enhanced RFID tag enabling heterogeneous wireless sensor networks. IEEE Sens. J., 14 (4) (2014), 10481055.Google Scholar
[5]Cook, B. et al. : RFID-based sensors for zero-power autonomous wireless sensor networks. IEEE Sens. J., IEEE, 14 (8) (2014), 24192431.CrossRefGoogle Scholar
[6]Ramos, A.; Lazaro, A.; Girbau, D.: Semi-passive time-domain UWB RFID system. IEEE Trans. Microw. Theory Tech., 61 (4) (2013), 17001708.Google Scholar
[7]Athalye, A.; Savic, V.; Bolic, M.; Djuric, P.: Novel semi-passive RFID system for indoor localization. IEEE Sens. J., 13 (2) (2013), 528537.Google Scholar
[8]Duroc, Y.; Andia Vera, G.: Towards autonomous wireless sensors: RFID and energy harvesting solutions, in Internet of Things. Springer, 2014, pp. 233255.Google Scholar
[9]Georgiadis, A.; Collado, A.: Improving range of passive RFID tags utilizing energy harvesting and high efficiency class-E oscillators, in 2012 Sixth European Conf. on Antennas and Propagation, March 2012, 3455–3458.CrossRefGoogle Scholar
[10]Costanzo, A.; Roselli, L.: EM- and piezo-scavengers: Two useful solutions in highly humanized scenarios toward a greener world, in 2012 IEEE MTT-S Int. Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, May 2012, 15–18.Google Scholar
[11]Vaz, A. et al. : Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring. IEEE Trans. Circuits Syst. II: Express Briefs, 57 (2) (2010), 9599.Google Scholar
[12]Carvalho, N. et al. : Wireless power transmission: RD activities within Europe. IEEE Microw. Theory Tech. Trans., 62 (4) (2014), 10311045.CrossRefGoogle Scholar
[13]Shinohara, N.: Recent wireless power transmission via microwave and millimeter-wave in Japan, in 2012 IEEE Microwave Conf. (EuMC), 42nd European, October 2015, 13471350.Google Scholar
[14]Popovic, Z.: Cut the cord: low-power far-field wireless powering. IEEE Microw. Mag., 14 (2) (2013), 5562.CrossRefGoogle Scholar
[15]Roberg, M.; Reveyrand, T.; Ramos, I.; Falkenstein, E.; Popovic, Z.: High-efficiency harmonically terminated diode and transistor rectifiers. IEEE Trans. Microw. Theory Tech., 60 (12) (2012), 40434052.Google Scholar
[16]Scheeler, R.; Korhummel, S.; Popovic, Z.: A dual-frequency ultralow-power efficient 0.5-g rectenna. IEEE Microw. Mag., 15 (1) (2014), 109114.Google Scholar
[17]Georgiadis, A.; Andia, G.; Collado, A.: Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting. IEEE Antennas Wireless Propag. Lett., 9 (2010), 444446.Google Scholar
[18]Andia Vera, G.; Duroc, Y.; Tedjini, S.: Analysis of harmonics in UHF RFID signals. IEEE Trans. Microw. Theory Tech., 61 (6) (2013), 24812490.Google Scholar
[19]Ladan, S.; Wu, K.: 35 GHz harmonic harvesting rectifier for wireless power transmission, in 2014 IEEE MTT-S Int. Microwave Symp. Digest, June 2014, 13.Google Scholar
[20]Andia Vera, G.; Duroc, Y.; Tedjini, S.: RFID test platform: nonlinear characterization. IEEE Trans. Instrum. Meas., 63 (9) (2014), 22992305.Google Scholar
[21]Boaventura, A.; Carvalho, N.: Maximizing dc power in energy harvesting circuits using multisine excitation, in 2011 IEEE MTT-S Int. Microwave Symp. Digest, June 2011, 14.CrossRefGoogle Scholar
[22]Trotter, M.; Griffin, J.; Durgin, G.: Power-optimized waveforms for improving the range and reliability of RFID systems, in 2009 IEEE Int. Conf. on RFID, April 2009, 8087.Google Scholar
[23]Collado, A.; Georgiadis, A.: Improving wireless power transmission efficiency using chaotic waveforms, in 2012 IEEE MTT-S Int. Microwave Symp. Digest, June 2012, 13.Google Scholar
[24]Collado, A.; Georgiadis, A.: Optimal waveforms for efficient wireless power transmission. IEEE Microw. Wireless Compon. Lett., 24 (5) (2014), 354356.CrossRefGoogle Scholar
[25]E. M. M. SA. Em4325 datasheet. [Online]. Available: http://www.emmicroelectronic.com=0ptGoogle Scholar
[26]Zheng, Y.C.; Hua, Zheng, Y.L.; Hong, W.: Design of a miniaturized RFID tag antenna with BAP technique, in 2014 3rd Asia-Pacific Conf. on Antennas and Propagation, July 2014, 256–258.Google Scholar
[27]A. Technologies. Hsms-286x series. [Online]. Available: http://www.avagotech.com/docs/AV02-1388EN=0ptGoogle Scholar
[28]Hagerty, J.A.: Nonlinear Circuits and Antennas for Microwave Energy Conversion. Ph.D. thesis, Department of Electrical and Computer Engineering, University of Colorado, 2003.Google Scholar
[29]Andia Vera, G.; Georgiadis, A.; Duroc, Y.; Tedjini, S.: Cooperative Integration of Harvesting Sections for Passive RFID Communication, in 2015 IEEE MTT-S Int. Microwave Symp. Digest (to be presented), May 2015, 13.CrossRefGoogle Scholar
[30]Yoo, T.W.; Kain, C.: Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans. Microw. Theory Tech., 40 (6) (1992), 12591266.Google Scholar
[31]Valenta, C.; Durgin, G.: Rectenna performance under power-optimized waveform excitation, in 2013 IEEE Int. Conf. on RFID, April 2013, 237244.Google Scholar
[32]Ladan, S.; Ghassemi, N.; Ghiotto, A.; Wu, K.: Highly efficient compact rectenna for wireless energy harvesting application. IEEE Microw. Mag., 14 (1) (2013), 117122.Google Scholar
[33]De Vita, G.; Iannaccone, G.: Design criteria for the RF section of UHF and microwave passive rfid transponders. IEEE Trans. Microw. Theory Tech., 53 (9) (2005), 29782990.Google Scholar
[34]Liu, J.: Dual-band RFID tag antenna using coplanar inverted-f/l structure, in 2010 IEEE Int. Conf. on RFID-Technology and Applications, June 2010, 9699.Google Scholar
[35]Marrocco, G.: The art of UHF RFID antenna design: impedance-matching and size-reduction techniques. IEEE Antennas Propag. Mag., 50 (1) (2008), 6679.Google Scholar
[36]Nguyen, D.S.; Le, X.C.; Pham, T.T.; Nguyen, V.H.; Dang, M.C.; Tedjini, S.: Novel design of RFID UHF passive tag for wideband applications by direct and contactless chip connection, in 2012 IEEE Int. Conf. on RFID-Technologies and Applications, November 2012, 131136.Google Scholar
[37]Andia Vera, G.; Nawale, S.D.; Duroc, Y.; Tedjini, S.: Optimum integration of passive UHF RFID tag-rectenna in a single feed dual band antenna, in 2014 XXXIth URSI General Assembly and Scientific Symp., August 2014, 14.Google Scholar
[38]Rao, K.; Nikitin, P.; Lam, S.: Antenna design for UHF RFID tags: a review and a practical application. IEEE Trans. Antennas Propag., 53 (12) (2005), 38703876.Google Scholar
[39]Impinj. Speedway Readers. [Online]. Available: http://www.impinj.com/products/readers/Google Scholar