Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T02:24:40.808Z Has data issue: false hasContentIssue false

Performance improvement of rectifiers for WPT exploiting thermal energy harvesting

Published online by Cambridge University Press:  13 April 2015

Marco Virili*
Affiliation:
University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy
Apostolos Georgiadis
Affiliation:
CTTC, Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain
Ana Collado
Affiliation:
CTTC, Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain
Kyriaki Niotaki
Affiliation:
CTTC, Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain
Paolo Mezzanotte
Affiliation:
University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy
Luca Roselli
Affiliation:
University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy
Federico Alimenti
Affiliation:
University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy
Nuno B. Carvalho
Affiliation:
Instituto de Telecomunicações, Dep. Electrónica, Telecomunicações e Informática, Universidade de Aveiro, Aveiro, Portugal
*
Corresponding author: M. Virili Email: [email protected]
Get access

Abstract

This paper proposes a combined harvesting system to improve the efficiency and flexibility of autonomous wireless network nodes, supplied by means of wireless power transfer technique. In particular, a mixed system for electromagnetic (EM) and thermal energy harvesting (EH), conceived for passive nodes of wireless sensor networks and radio frequency (RF) identification tags, is described. The proposed system aims at increasing the effectiveness and the efficiency of the EH system by integrating an antenna and a rectifier with a thermo-electric generator (TEG) able to perform thermal EH. The energy provided by the thermal harvester is exploited twice: to increase the rectifier efficiency by providing a voltage usable to improve the bias condition of the rectifying diode, and to provide additional dc energy, harvested for free. Ultimately, a great efficiency improvement, especially at low incident RF power, has been observed. The design methodology and the EM performance of a quarter-wavelength patch antenna, integrated with the TEG are resumed. Then, a test campaign to evaluate the thermal EH performance has been carried out. Afterward, a rectifier with variable bias voltage, operating at the same frequency of the antenna, has been opportunely designed to exploit the harvested thermal energy to bias the diode. A measurement campaign has been then carried out to test the efficiency increment obtained and to validate the proposed solution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Evans, D.: The internet of things how the next evolution of the internet is changing everything. CISCO White papers, 2011. [Online]. Available: www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf Google Scholar
[2] Want, R.; Russell, D.M.: Ubiquitous electronic tagging IEEE distributed systems online. IEEE Educational Activities Department, 2000.Google Scholar
[3] Nathan, A. et al. : Flexible electronics: the next ubiquitous platform, in Proc. of the IEEE, vol. 100, no. Special Centennial Issue, May 13 2012, 1486, 1517.Google Scholar
[4] Kim, S.; Mariotti, C.; Alimenti, F.; Mezzanotte, P.; Georgiadis, A.; Collado, A.; Roselli, L.; Tentzeris, M.: No battery required: Perpetual RFID-enabled wireless sensors for cognitive intelligence applications. IEEE Microw. Mag., 14 (5) (2013), 6677.CrossRefGoogle Scholar
[5] Bui, N.; Georgiadis, A.; Miozzo, M.; Rossi, M.; Vilajosana, X.: SWAP project: beyond the state of the art on harvested energy-powered wireless sensors platform design, in IEEE Workshop on Internet of Things Technology and Architectures 2011 (IoTech), Valencia, Spain, October 27–21, 2011.CrossRefGoogle Scholar
[6] Vyas, R.J.; Cook, B.B.; Kawahara, Y.; Tentzeris, M.M.: E-WEHP: A batteryless embedded sensor-platform wirelessly powered from ambient digital-TV signals. IEEE Trans. Microw. Theory Tech., 61 (6) (2013), 2491, 2505.CrossRefGoogle Scholar
[7] Roselli, L.; Alimenti, F.; Orecchini, G.; Mariotti, C.; Mezzanotte, P.; Virili, M.: WPT, RFID and energy harvesting: Concurrent technologies for the future networked society, in Microwave Conf. Proc. (APMC), 2013 Asia-Pacific, November 2013, 462–464.CrossRefGoogle Scholar
[8] Shinohara, N.: Power without wires. IEEE Microw. Mag., 12 (7) (2011), S64, S73.CrossRefGoogle Scholar
[9] Borges Carvalho, N. et al. Wireless power transmission: R&D activities within Europe. IEEE Trans. Microw. Theory Tech., 62 (4) (2014), 1031, 1045.CrossRefGoogle Scholar
[10] Garnica, J.; Chinga, R.A.; Jenshan, Lin: Wireless power transmission: from far field to near field. Proc. IEEE, 101 (6) (2013), 1321, 1331.CrossRefGoogle Scholar
[11] Valenta, C.R.; Durgin, G.D.: Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag., 15 (4) (2014), 108, 120.Google Scholar
[12] Popovic, Z.: Far-field wireless power delivery and power management for low-power sensors, in 2013 IEEE Wireless Power Transfer (WPT), May 2013, 1–4.CrossRefGoogle Scholar
[13] Beeby, S.; White, N.: Energy Harvesting for Autonomous Systems (Smart Materials, Structures, and Systems), Artech House, Norwood MA, 2010.Google Scholar
[14] Vullers, R.J.M.; Schaijk, R.V.; Visser, H.J.; Penders, J.; Hoof, C.V.: Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Mag., 2 (2) (2010), 29, 38. Spring.CrossRefGoogle Scholar
[15] Niotaki, K.; Georgiadis, A.; Collado, A.: Thermal energy harvesting for power amplifiers, in Proc. 2013 IEEE Radio and Wireless Week, Austin, Texas, USA, January 2013.Google Scholar
[16] Guenda, L.; Santana, E.; Collado, A.; Niotaki, K.; Carvalho, N.B.; Georgiadis, A.: Electromagnetic energy harvesting global information database. Wiley Trans. Emerging Telecommun. Tech., 25 (1) (2014), 5663.CrossRefGoogle Scholar
[17] Collado, A.; Georgiadis, A.: Conformal hybrid solar and Electromagnetic (EM) Energy harvesting Rectenna. IEEE Trans. Circuits Syst. I: Regular Papers, 60 (8) (2013), 2225, 2234.CrossRefGoogle Scholar
[18] Virili, M.; Georgiadis, A.; Niotaki, K.; Collado, A.; Alimenti, F.; Mezzanotte, P.; Roselli, L.; Carvalho, N.B.: Design and optimization of an antenna with Thermo-Electric Generator (TEG) for autonomous wireless nodes, in RFID-Technologies and Applications (RFID-TA), 2014 IEEE Int. Conf. on, Tampere, Finland, September 8–9, 2014.CrossRefGoogle Scholar
[19] Dini, M. et al. : A fully-autonomous integrated rf energy harvesting system for wearable applications, in 2013 European Microwave Conf. (EuMC), 6–10 October 2013, 987, 990.Google Scholar
[20] Lemey, S.; Declercq, F.; Rogier, H.: Textile antennas as hybrid energy-harvesting platforms. IEEE Proc., 102 (11) (2014), 1833, 1857.CrossRefGoogle Scholar
[21] Pinuela, M.; Mitcheson, P.D.; Lucyszyn, S.: Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theory Tech., 61 (7) (2013), 2715, 2726.CrossRefGoogle Scholar
[22] Costanzo, A. et al. : Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach, to Appear on the Special Issue of the Proc. of IEEE, December 2014.CrossRefGoogle Scholar
[23] Brown, W.C.; George, R.H.; Heeman, N.I.: Microwave to DC converter. U.S. Patent 3 434 678, 1969.Google Scholar
[24] Falkenstein, E.; Roberg, M.; Popovic, Z.: Low-power wireless power delivery. IEEE Trans. Microw. Theory Tech., 60 (7) (2012), 2277, 2286.CrossRefGoogle Scholar
[25] Hagerty, J.A.; Helmbrecht, F.B.; McCalpin, W.H.; Zane, R.; Popovic, Z.B.: Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans. Microw. Theory Tech., 52 (3) (2004), 1014, 1024.CrossRefGoogle Scholar
[26] Boaventura, A.; Collado, A.; Carvalho, N.B.; Georgiadis, A.: Optimum behavior: Wireless power transmission system design through behavioral models and efficient synthesis techniques. IEEE Microw. Mag., 14 (2) (2013), 2635.CrossRefGoogle Scholar
[27] Han, Y.; Leitermann, O.; Jackson, D.A.; Rivas, J.M.; Perreault, D.J.: Resistance compression networks for radiofrequency power conversion. IEEE Trans. Power Electron., 22 (1) (2007), 4153.CrossRefGoogle Scholar
[28] Niotaki, K.; Georgiadis, A.; Collado, A.: “Dual-band rectifier based on resistance compression networks,” Microwave Symposium (IMS), 2014 IEEE MTT-S International, pp.1,3, 1–6 June 2014.CrossRefGoogle Scholar
[30]Texas Instruments LM35 thermal sensor datasheet [Online]. Available: www.ti.com.cn/cn/lit/ds/symlink/lm35.pdf Google Scholar
[31]Arduino UNO board datasheet [Online]. Available: arduino.cc/en/Main/arduinoBoardUno Google Scholar