Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T13:10:02.821Z Has data issue: false hasContentIssue false

Some Biochemical Aspects of the Mechanisms of Herbicidal Activity

Published online by Cambridge University Press:  12 June 2017

Clanton C. Black Jr.
Affiliation:
Charles F. Kettering Research Laboratory, Yellow Springs, Ohio
Larry Myers
Affiliation:
Charles F. Kettering Research Laboratory, Yellow Springs, Ohio
Get access

Abstract

A discussion is presented on some mechanisms whereby certain plant growth-regulating materials may exert their activity on plants. A discussion of photosynthesis is developed on the basis of two light reactions being involved in the photosynthetic process. Herbicides which may be active in photosynthesis are considered in relation to their site and mode of action. Current theories of nucleic acid metabolism and protein synthesis are presented and certain inhibitors of these processes are discussed and the possible involvement of plant growth-regulators is considered.

Type
Brief Papers
Information
Weeds , Volume 14 , Issue 4 , October 1966 , pp. 331 - 338
Copyright
Copyright © 1966 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bendana, F. E., Galston, A. W., Kaur-Sawhney, R., and Penny, P. J. 1965. Recovery of labeled ribonucleic acid following administration of labeled auxin to green pea stem sections. Plant Physiol. 40:977983.CrossRefGoogle ScholarPubMed
2. Bishop, N. I. 1958. The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim. et Biophys. Acta 27:205206.Google Scholar
3. Bishop, N. I. 1962. Inhibition of the oxygen-evolving system of photosynthesis by amino-triazines. Biochim. et Biophys. Acta 57:186189.Google Scholar
4. Black, C. C. 1965. Reduction of trimethylene dipridyl with illuminated chloroplasts. Science 149:6263.CrossRefGoogle Scholar
5. Black, C. C. 1966. Chloroplast reactions with dipyridyl salts. Biochim. et Biophys. Acta. 120:332340.CrossRefGoogle ScholarPubMed
6. Black, C. C., San Pietro, A., Limbach, D., and Norris, G. 1963. Photosynthetic phosphorylation catalyzed by factors isolated from photosynthetic organisms. Proc. Natl. Acad. Sci. 50:3743.CrossRefGoogle ScholarPubMed
7. Bogorad, L. and Jacobson, A. B. 1964. Inhibition of greening of etiolated leaves by actinomycin D. Biochem. Biophys. Res. Comm. 14:113117.Google Scholar
8. Brian, R. C., Homer, R. F., Stubbs, J., and Jones, R. L. 1958. A new herbicide 1 : 1 ethylene-2: 2′dipyridylium dibromide. Nature 181:446447.Google Scholar
9. Büchel, K. F., Korte, F., Trebst, A., and Pistorius, E. 1965. Inhibition of photosynthesis reactions by NH-acidic imidazoles and benzimidazoles. Angew. Chem. Internatl. Ed. 4:789790.Google Scholar
10. Crafts, A. S. 1961. Chemistry and Mode of Action of Herbicides. Interscience Publishers, Inc. N. Y., N. Y. 269 pp.Google Scholar
11. Falaschi, A. and Kornberg, A. 1964. Phleomycin, an inhibitor of DNA polymerase. Fed. Proc. 23:940945.Google Scholar
12. Goldberg, I. H. and Reich, E. 1964. Actinomycin inhibition of RNA synthesis directed by DNA. Fed. Proc. 23:958964.Google Scholar
13. Hilton, J. L., Jansen, L. L. and Hull, H. M. 1963. Mechanisms of herbicide action. Ann. Rev. Plant Physiol. 14:353384.Google Scholar
14. Homer, R. F., Mees, C. G., and Tomlinson, T. E. 1960. Mode of action of dipyridyl quaternary salts as herbicides, J. Sci. Food Agric. 11:309315.Google Scholar
15. Jagendorf, A. T. and Uribe, E. 1966. ATP formation caused by acid-base transition of spinach chloroplasts. Proc. Natl. Acad. Sci. 55:170177.Google Scholar
16. Kearney, E. B. and Singer, T. P. 1956. Studies on succinic dehydrogenase. I. Preparation and assay of the soluble dehydrogenase. J. Biol. Chem. 219:963975.Google Scholar
17. Key, J. L. 1964. Ribonucleic acid and protein synthesis as essential processes for cell elongation. Plant Physiol. 39:365370.Google Scholar
18. Key, J. L. and Ingle, J. 1964. Requirement for the synthesis of DNA-like RNA for growth of excised plant tissue. Proc. Natl. Acad. Sci. 52:13821388.Google Scholar
19. Khurduk, N. N. and Nezgovorova, L. A. 1962. Inhibition of photosynthesis by isonicotinic acid hydrazide, hydroxylamine, and chloramphenicol. Translation of Soviet Plant Physiol. 8:585591.Google Scholar
20. Krall, A. R., Good, N. E., and Mayne, B. C. 1961. Cyclic and non-cyclic photophosphorylation in chloroplasts distinguished by use of labeled oxygen. Plant Physiol. 36:4447.CrossRefGoogle ScholarPubMed
21. Lazzarini, R. A. and San Pietro, A. 1962. The reduction of cytochrome c by photosynthetic pyridine nucleotide and transhydrogenase. Biochim. et Biophys. Acta 62:417420.Google Scholar
22. Löw, H., Alm, B., and Vallin, I. 1964. The use of phenazine methosulfate in the study of oxidative phosphorylation. Biochem. Biophys. Res. Commun. 14:347352.CrossRefGoogle Scholar
23. Margulies, M. M. 1962. Effect of chloramphenicol on light dependent development of seedlings of Phaseolus vulgaris var. Black Valentine, with particular reference to development of photosynthetic activity. Plant Physiol. 37:473480.Google Scholar
24. Margulies, M. M. 1964. Effect of chloramphenicol on light-dependent synthesis of proteins and enzymes of leaves and chloroplasts of Phaseolus vulgaris . Plant Physiol. 39:579585.Google Scholar
25. Mayne, B. C. and Clayton, R. K. 1966. Luminescence of chlorophyll in spinach chloroplasts induced by acid-base transition. Proc. Natl. Acad. Sci. 55:494497.CrossRefGoogle ScholarPubMed
26. Merkle, M. G., Leinweber, C. L., and Bovey, R. W. 1965. The influence of light, oxygen and temperature on the herbicidal properties of paraquat. Plant Physiol. 40:832835.CrossRefGoogle ScholarPubMed
27. Moreland, D. E., Gentner, W. A., Hilton, J. L., and Hill, K. L. 1959. Studies on the mechanisms of herbicidal action of 2-chloro-4, 6-bis(ethyliamino)-s-triazine. Plant Physiol. 34:432435.CrossRefGoogle Scholar
28. Nathans, D. 1964. Inhibition of protein synthesis by puromycin. Fed. Proc. 23:984989.Google Scholar
29. Okuma, K., Lyon, J. L., Addicott, F. T., and Smith, O. E. 1963. Abscisin II. An abscission-accelerating substance from young cotton fruit. Science 142:15921593.CrossRefGoogle Scholar
30. Paleg, L. G. 1960. Physiological effects of gibberellic acid. II. On starch hydrolyzing of barley endosperm. Plant Physiol. 35:902906.Google Scholar
31. Paleg, L. G. 1965. Physiological effects of gibberellins. Ann. Rev. Plant Physiol. 16:291322.Google Scholar
32. San Pietro, A. 1963. Photosynthetic pyridine nucleotide reductase. In Methods in Enzymology, ed. Colowick, S. P. and Kaplan, N. O. Academic Press, Inc. N. Y., Vol. VI. pp. 439445.Google Scholar
33. San Pietro, A. and Black, C. C. 1965. Enzymology of energy conversion in photosynthesis. Ann. Rev. Plant Physiol. 16:155174.Google Scholar
34. Skoog, F. 1954. Substances involved in normal growth and differentiation of plants. Brookhaven Symposia No. 6, pp. 121.Google Scholar
35. Smillie, R. M., Evans, W. R., and Lyman, H. 1964. Metabolic events during the formation of a photosynthetic from a nonphotosynthetic cell. Brookhaven Symposia No. 16:89107.Google Scholar
36. Smith, A. L. and Hansen, M. 1962. Three discrete coupling proteins in oxidative phosphorylation. Bioehem. Biophys. Res. Commun. 8:136141.Google Scholar
37. Spencer, D. 1965. Protein synthesis by isolated spinach chloroplasts. Arch. Biochem. Biophys. 111:381390.CrossRefGoogle ScholarPubMed
38. Spencer, D. and Wildman, S. G. 1964. The incorporation of amino acids into proteins by cell-free extracts from tobacco leaves. Biochemistry 3:954959.CrossRefGoogle ScholarPubMed
39. Thomas, T. H., Wareing, P. E., and Robinson, P. M. 1965. Action of the sycamore dormin as a gibberellin antogonist. Nature 205:12701272.CrossRefGoogle Scholar
40. Treharne, R. W., Brown, T. E., and Vernon, L. P. 1963. Separation of two-light-induced electron-spin-resonance signals in several algal species. Biochim. et Biophys. Acta 75:324332.CrossRefGoogle ScholarPubMed
41. Varner, J. E., Chandra, G. R., and Chrispeels, M. J. 1965. Gibberellic acid-controlled synthesis of α-amylase in barley endosperm. J. Cell. and Comp. Physiol. Suppl. 66:5568.Google Scholar
42. Weisberger, A. S. and Wolfe, S. 1964. Effect of chloramphenicol on protein synthesis. Fed. Proc. 23:976983.Google Scholar
43. Wessels, J. S. C. and van der Veen, R. 1956. The action of some derivatives of phenylurethan and of 3-phenyl-1, 1-dimethylurea on the Hill reaction. Biochim. et Biophys. Acta 19:548549.Google Scholar
44. Yarmolinsky, M. B. and de la Haba, G. L. 1959. Inhibition by puromycin of amino acid incorporation into protein. Proc. Natl. Acad. Sci. 45:17211729.Google Scholar
15. Yomo, H. 1960. Studies on the amylase activating substance. IV. On the amylase activating action of gibberellin. Hakko Kyokaishi, 18:600602 (Cited in Chem. Abs. 55:26145. 1961).Google Scholar
46. Zweig, G., Lakso, J., and Kegel, L. P. 1965. The effect of quinones on photophosphorylation by isolated chloroplasts. Plant Physiol. 40: Suppl. xli.Google Scholar